Skip to main content
Skip header

Building Environment

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code229-0102/01
Number of ECTS Credits Allocated5 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredSummer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
SKO80doc. Ing. Iveta Skotnicová, Ph.D.
PAN083Ing. Vladan Panovec, Ph.D.
Summary
The course deals with building thermal technology (thermal protection of buildings). Students will learn the main thermal technical requirements and computing procedures according to European and Czech standards. They will be able to propose additional measures to improve the thermal properties of buildings and to improve the energy efficiency of existing buildings.
Learning Outcomes of the Course Unit
Student will acquire basic knowledge and skills in building thermal technology. He will learn to assess structures and buildings according regulative and standard requirements. He is able to solve elementary computational tasks using approximate and exact methods using special softwares and he will get the ability to design and evaluate the building structure in terms of thermal technical requirements.
Course Contents
Lecture Warp:
1. Heat transfer processes of conduction, convection, radiation. Fourier's laws. Parameters of internal and external microclimate.
2. Building materials and their thermal properties – density, thermal conductivity coefficient, specific heat kapacity, diffusion conductivity factor.
3. Heat transfer – thermal resistence, U-value (Heat thermal transmittance value).
4. The lowest internal surface temperature. Temperature factor at the internal surface.
5. Thermal bridges and connections. Two-dimensional heat flow.
6. Linear and point thermal transmittance.
7. Humidity transfer - vapour diffusion, diffusion resistance, factor of diffusion resistance, balance of condensation and evaporation.
8. Air transfer - air permeability, coefficient of lenth join air permeability, space rate changing air.
9. Unsteady heat transfer – drop of contact temperature.
10. Thermal stability of the rooms in winter and summer conditions.
11. Heat transfer of building envelope - average transmission heat loss coefficient (average U-value).
12. Energy consumption. Building energy certificate.
13. Thermotechnical design of structural elements and buildings.
14. Thermotechnical survey of buildings. Low energy and passive buildings.
Exercises Warp:
1. Parameters of internal and external microclimate. Measuring of temperature and humidity of air.
2. Building materials and their thermal properties – measuring of density, thermal conductivity coefficient, specific heat kapacity, diffusion conductivity factor. Aword programme.
3. Calculations of thermal resistence and U-value for homogeneous constructions (one-dimensional heat flow).
4. Calculations of thermal resistence and U-value for constructions with thermal bridges (two-dimensional heat flow) – approximate methods.
5. Calculations of thermal resistence and U-value for constructions with thermal bridges (two-dimensional heat flow) – exact methods.
6. Calculations of temperature factor at the internal surface for homogeneous constructions and constructions with thermal bridges.
7. Linear and point thermal transmittance – calculation method of solving temperature field.
8. Calculation of balance of condensation and evaporation.
9. Calculation of drop of contact temperature.
10. Measuring of air transfer (blower door test).
11. Thermal stability of the rooms in winter and summer conditions.
12. Calculation of heat transfer of building envelope.
13. Calculation of energy consumption. Building energy certificate.
14. Credit
Recommended or Required Reading
Required Reading:
HENS, H. Applied Building Physics – Boundary Conditions, Building Performance and Material Properties. Berlin: Wilhelm Ernst Sohn, 2011. 308 p. ISBN 978-3-433-02962-6.

EN ISO 6946:2007 Building components and building elements -- Thermal resistance and thermal transmittance -- Calculation method.
The Energy Performance of Buildings Directive (EPBD, Directive 2010/31/EU).

KABELE, K. a kol. Hodinová klimatická data a parametry typického užívání budov a zón s chlazením, úpravou vlhkosti nebo s výrobou elektrické energie pro výpočet dodané energie a pomocné energie v souladu s § 4 odst. 1 vyhlášky č. 264/2020 Sb., o energetické náročnosti budov. Společnost pro techniku prostředí. 2022, ISBN 978-80-02-02987-8.

Bošová, D., Kulhánek, F. Stavební fyzika II. Stavební tepelná technika. Praha : ČVUT, 2015. 191 stran. ISBN 978-80-01-05645-5.

HENS, H. Building Physics – Heat, Air and Moisture – Fundamentals and Engineering Methods with Examples And Exercises. 2nd Edition, Berlin: Wilhelm Ernst Sohn, 2012. 315 p. ISBN 978-3-433-03027-1.
Recommended Reading:
Roaf, S., Hancock, M. Energy Efficiency Building, Blackwell, Oxford 1992.
Tywoniak, J. a kolektiv: Nízkoenergetické domy 3. Nulové, pasivní a další. GRADA Publishing 2012.
ČSN 730540 - 2:2011 Tepelná ochrana budov. Část 2. Požadavky.
ČSN 73 0540/2005 – Tepelná ochrana budov - Části 1,3,4.
Vaverka, J. a kol. Stavební tepelná technika a energetika budov. VUTIUM Brno, 2006
Planned learning activities and teaching methods
Lectures, Tutorials
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit35 18
        ExaminationExamination65 16