Skip to main content
Skip header

BIM in structural mechanics

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code228-0320/01
Number of ECTS Credits Allocated5 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
KRE13prof. Ing. Martin Krejsa, Ph.D.
KON09doc. Ing. Petr Konečný, Ph.D.
Summary
Students will get the knowledge and skills necessary for static analysis of 1D, 2D and 3D structures by the finite element method. Practical training is carried out in a computer laboratory. The software systems SCIA Engineer, RFEM and ANSYS are used for teaching. Students will acquire knowledge that will enable them to master any system for analysis of structures by the finite element method.
Learning Outcomes of the Course Unit
The aim of the subject BIM in structural mechanics is to familiarize students with basic skills in performing static calculations using available software within BIM (information building modeling), which is a modern way of planning and realization of construction projects. Building information modeling is based on the interconnection of all project participants. All building-related data is maintained in digital form in the 3D building model. The individual computational models, for example the model for the assessment of the load-bearing structure, are then derived from this digital building model. The procedures that will students learn in this course can integrate this data into program systems for static analysis, which are widely used in design practice. The clear advantage of this BIM design is the more efficient and faster transfer of information between the designer of carrying structure and the civil engineer and/or architect, and a considerable saving in structural modeling time. Another indisputable advantage is the direct connection of the project work task sequences associated with the drawings of building components, such as plans of reinforcement of monolithic structures or plans of steel structures. Furthermore, the use of BIM modeling eliminates many unnecessary errors.
Software solutions used in this course (SCIA Engineer, RFEM and ANSYS) fully support OPEN BIM technology based on the Industry Foundation Classes (IFC) data format and enable the import and export of input and output data at this level. These software systems include BIM tools to convert an architectural model from CAD programs (AutoCAD, ArchiCAD) to a finite element analysis model. The resulting static and deformation variables can then be exported via IFC data format to other software products focused on detailed structural design of load-bearing elements of various building materials - concrete, steel and wood (eg Tekla Structures, Revit and IDEA Connections). For static calculations, a computational model consisting of general solids needs to be transformed using BIM tools into an analytical model that contains the appropriate 1D, 2D or 3D computational objects - such as columns, beams, walls, slabs, or shells. Another problem that students will be familiarized with and learn to eliminate it is the discontinuity of some parts of the model, which can arise when converting general bodies to FEM elements. Such discontinuities if not dealt properly lead to instability of the calculation due to the singular matrix of stiffness of the structure. After successfully defining the geometry of the structure, it is necessary to define the loads and their combinations and correct boundary conditions related e.g. to the real structural support system.
Course Contents
 Introduction to BIM from the point of view of structural mechanics.
 Overview of software systems for static analysis of building structures.
 Methods of structural mechanics - overview.
 Computational models - idealization, overview.
 Modeling of frame structures (truss, frame), openings, eccentricities and joints.
 Modeling of boundary conditions.
 Load modeling and combinations
 Static solution of complex beam structure in applied software systems using BIM technologies
 Introduction to surface structures, theoretical background, plane stress, plane deformation, bearing walls, plates and shells.
 Fundamentals of finite element method.
 Convergence, modeling problems.
 Checking solution results - simplified methods, manual checks.
 Physically nonlinear problems.
 Geometrically nonlinear problems.
 Associated problems.
 Experimental verification of computational models.
Recommended or Required Reading
Required Reading:
ZIENKIEWICZ, Olek C., Robert L. TAYLOR and J. Z. ZHU. The Finite Element Method: Its Basics and Fundamentals. 7th ed. Burlinghton: Butterworth-Heinemann, 2013. ISBN 978-1856176330.
Getting Started with SCIA Engineer. SCIA Engineer: Structural Analysis Software [online]. Herk-de-Stad, Belgium: SCIA nv, 2019 [cit. 2019-10-31]. Available from: https://www.scia.net/en/support/getting-started-scia-engineer
Structural FEA Program RFEM. Dlubal Software: Structural Analysis and Design Software [online]. Tiefenbach, Germany: Dlubal Software, 2019 [cit. 2019-10-31]. Available from: https://www.dlubal.com/en/products/rfem-fea-software/first-steps-with-rfem
ANSYS Inc. - ANSYS Documentation
KOLÁŘ, Vladimír, Ivan NĚMEC a Viktor KANICKÝ. FEM: Principy a praxe metody konečných prvků. 1. vyd. Praha: Computer Press, 1997. ISBN 80-7226-021-9.
ZIENKIEWICZ, Olek C., Robert L. TAYLOR a J. Z. ZHU. The Finite Element Method: Its Basics and Fundamentals. 7. vyd. Burlinghton: Butterworth-Heinemann, 2013. ISBN 978-1856176330.
První kroky se SCIA Engineer. SCIA Engineer: Výpočtový a dimenzační software [online]. Praha: SCIA CZ, 2019 [cit. 2019-10-31]. Dostupné z: https://www.scia.net/cs/support/zaciname-se-scia-engineer
RFEM pro statické MKP výpočty. Dlubal Software: Software pro navrhování a výpočty konstrukcí [online]. Praha: Dlubal Software, 2019 [cit. 2019-10-31]. Dostupné z: https://www.dlubal.com/cs/produkty/rfem/prvni-kroky-s-programem-rfem
ANSYS Inc. - ANSYS Documentation
Recommended Reading:
ZIENKIEWICZ, Olek C., Robert L. TAYLOR and David A. FOX. Finite Element Method for Solid and Structural Mechanics. 7th ed. Elsevier Science & Technology, 2013. ISBN 978-1856176347.
ZIENKIEWICZ, Olek C. The Finite Element Method in Engineering Science. 3rd ed. and reprint. ed. London: McGraw-Hill, 1977. ISBN 978-0070941380.
BATHE, Klaus-Jürgen. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice Hall, Englewood Clifts, 1982. ISBN 978-0133173055.
BATHE, Klaus-Jürgen and Edward L. WILSON. Numerical methods in finite element analysis. New York: Englewood Cliffs, Prentice-Hall, 1976. ISBN 978-0136271901.
DESAI, Chandrakant S. and John F. ABEL. Introduction to the finite element method: A numerical method for engineering analysis. New York: Van Nostrand Reinhold, 1972. ISBN 978-0442220839.
HAMMING Richard W. Introduction to Applied Numerical Analysis. New York: Dover Publications, 2012. ISBN 978-0486485904.
MADENCI Erdogan and Ibrahim GUVEN. The Finite Element Method and Applications in Engineering Using ANSYS. 2nd ed. New York: Springer, 2015. ISBN 978-1489975492.
COOK, Robert D., David S. MALKUS, Michael E. PLESHA and Robert J. WITT. Concepts and applications of finite element analysis. 4th ed. New York: John Wiley, 2001. ISBN 978-0-471-35605-9.
GALLAGHER, Richard H. Finite element analysis—fundamentals. New York: Englewood Cliffs, Prentice-Hall, 1975.
SEGERLIND, Larry J. Applied finite element analysis. New York: John Wiley, 1976.
DHATT Gouri, Emmanuel LEFRANCOIS a Gilbert TOUZOT. Finite Element Method. Wiley-ISTE, 2012. ISBN: 978-1-118-56970-2.
University of Alberta - ANSYS Tutorials. University of Alberta: [cit. 2019-11-05]. Dostupné z: https://sites.ualberta.ca/~wmoussa/AnsysTutorial/
KOLÁŘ, Vladimír, Jiří KRATOCHVÍL, František LEITNER a Alexander ŽENÍŠEK. Výpočet plošných a prostorových konstrukcí metodou konečných prvků. 2. přeprac. vyd. Praha: SNTL, 1979.
ZIENKIEWICZ, Olek C., Robert L. TAYLOR a David A. FOX. Finite Element Method for Solid and Structural Mechanics. 7. vyd. Elsevier Science & Technology, 2013. ISBN 978-1856176347.
ZIENKIEWICZ, Olek C. The Finite Element Method in Engineering Science. 3. a další reprint. vyd. London: McGraw-Hill, 1977. ISBN 978-0070941380.
BATHE, Klaus-Jürgen. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice Hall, Englewood Clifts, 1982. ISBN 978-0133173055.
BATHE, Klaus-Jürgen a Edward L. WILSON. Numerical methods in finite element analysis. New York: Englewood Cliffs, Prentice-Hall, 1976. ISBN 978-0136271901.
DESAI, Chandrakant S. a John F. ABEL. Introduction to the finite element method: A numerical method for engineering analysis. New York: Van Nostrand Reinhold, 1972. ISBN 978-0442220839.
BITTNAR, Zdeněk, Petr ŘEŘICHA. Metoda konečných prvků v dynamice konstrukcí. Praha: SNTL, 1981.
BITTNAR, Zdeněk, Jiří ŠEJNOHA. Numerické metody mechaniky I. a II. Praha: Vydavatelství ČVUT, 1992. ISBN 80-01-00855-X.
KOLÁŘ, Vladimír. Chyby ve výpočtech konstrukcí. Ostrava: Expert, 1995.
HAMMING Richard W. Introduction to Applied Numerical Analysis. New York: Dover Publications, 2012. ISBN 978-0486485904.
MADENCI Erdogan a Ibrahim GUVEN. The Finite Element Method and Applications in Engineering Using ANSYS. 2. vyd. New York: Springer, 2015. ISBN 978-1489975492.
COOK, Robert D., David S. MALKUS, Michael E. PLESHA a Robert J. WITT. Concepts and applications of finite element analysis. 4. vyd. New York: John Wiley, 2001. ISBN 978-0-471-35605-9.
GALLAGHER, Richard H. Finite element analysis—fundamentals. New York: Englewood Cliffs, Prentice-Hall, 1975.
SEGERLIND, Larry J. Applied finite element analysis. New York: John Wiley, 1976.
DHATT Gouri, Emmanuel LEFRANCOIS a Gilbert TOUZOT. Finite Element Method. Wiley-ISTE, 2012. ISBN: 978-1-118-56970-2.
University of Alberta - ANSYS Tutorials. University of Alberta: [cit. 2019-11-05]. Dostupné z: https://sites.ualberta.ca/~wmoussa/AnsysTutorial/
Planned learning activities and teaching methods
Lectures, Tutorials
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit35 18
        ExaminationExamination65 33