Skip to main content
Skip header

Cybernetics

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code450-2019/01
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *First Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredSummer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites
PrerequisitiesCourse Unit CodeCourse Unit Title
450-2009Signals and Systems
Name of Lecturer(s)Personal IDName
OZA77doc. Ing. Štěpán Ožana, Ph.D.
Summary
The Cybernetics course gives an explonation of the basic concepts of cybernetics, especially the basic features and characteristics of dynamic systems and control systems.
Students get acquainted with the problematic of description and analysis of continuous and discrete linear dynamic systems. Further topics on the list are stability, steady-state analysis and control quality. The course also briefly presents problems of nonlinear control systems, and basic information about hardware and software means used in automation discipline.
Learning Outcomes of the Course Unit
The aim of the course is providing students of bachelor's program basic information on the field of cybernetics, particularly on the field of dynamical systems and automatic control. Students will be able to carry out an analysis of simple dynamic systems and feedback control circuits, and will obtain basic information about the hardware and software means used in automation. Practical assignments will be solved by PC with Matlab and Simulink/ Scilab.
Course Contents
Lectures:

1. Basic notation and technical terms in the area of technical cybernetics. Classification of systems, concepts of open-loop and closed-loop control.
2. Examples of open-loop and closed-loop control. Educational physical models, real technology control in practice. Alternatively: excursion to a company involved in the field of industrial automation.
3. Mathematical background used in cybernetics and control systems. The problems of modeling and simulation.
4. Input/output description of dynamical systems.
5. State-space description of dynamical systems.
6. Basic dynamic systems and their properties.
7. Introduction to analysis of SISO and MIMO continuous and discret systems.
8. Feedback control circuit, its functions, structure and basic properties. Introduction to continuous control (PID control).
9. Introduction to digital control, discrete control circuit. Discrete systems, problem of discretization of continuous systems.
10. Introduction to identification of the systems.
11. Introduction to nonlinear systems.
12. HW means for the design and implementation of control systems.
13. SW means for the design and implementation of control systems.
14. History, present-day, new trends and concepts in the area of technical cybernetics.

Exercises:
1. Getting acquainted with the outline of the course and with the laboratory. Safety training.
2. Examples of laboratory educational models with a demonstration of the principle of feedback control – laboratory exercise.
3. Application of mathematical tools in the form of examples, demonstration of Matlab and Simulink / Scilab.
4. Input/output description of the systems, demonstration of Matlab and Simulink / Scilab – laboratory exercise.
5. State-space description of systems, demonstration of Matlab and Simulink / Scilab – laboratory exercise.
6. Basic dynamic systems, demonstration of Matlab and Simulink / Scilab – laboratory exercise.
7. Feedback control circuit – introduction, analysis, demonstration in Matlab and Simulink / Scilab.
8. Introduction to analysis of SISO and MIMO continuous and discret systems, demonstration in Matlab and Simulink / Scilab.
9. Discrete control circuit, discretization, demonstration in Matlab and Simulink / Scilab.
10. Basic methods of identification of the systems, demonstration in Matlab and Simulink / Scilab.
11. Introduction to problems of nonlinear systems, demonstration in Matlab and Simulink / Scilab.
12. Working on individual projects.
13. Demonstration of HW and SW means used for control.
14. Credit, checking of the projects.

Projects:
Each student gets assignment of one project to be processed by PC. Time consumption: appx. 20 hours. The title of the project: Fundamentals of analysis of continuous SISO control circuits and continuous linear and nonlinear plants.
Recommended or Required Reading
Required Reading:
Srovnal,V.: Cybernetics. Student's E-book, VSB-TU, FEI, Ostrava 2008.
[1] Srovnal,V: Kybernetika. Učební text a návody do cvičení. VŠB-TUO, FEI, Ostrava 2012.
[2] Beneš, P. (2014). Automatizace a automatizační technika : prostředky automatizační techniky. 3. Brno, Computer Press.
[3] Beneš,P. (2012) Automatizace a automatizační technika. 1, Systémové pojetí automatizace. Brno, Computer Press.
[4] Maixner, L. and P. Beneš (2014). Automatizace a automatizační technika. 2, Automatické řízení. Brno, Computer Press.
Recommended Reading:
Astrom,K.J.,Murray, M., Feedback Systems. New Jersey , Princeton University Press 2008
Franklin,G.F.,at all.:Feedback Control of Dynamic Systems. Pearson Prentice Hall 2002/2006
Golnaraghi, F., Kuo, B.C., Automatic Control Systems, 9th Edition, John Wiley & Sons, Inc. 2010, ISBN-13 978-0470-04896-2
Ogata, K., Modern Control Engineering. (5th Edition), Prentice-Hall 2009
Ogata,K., Discrete-time Control Systems. (2nd Edition), Prentice-Hall 1995
Shinners,S.M.:Modern Control System Theory and Design. John Wiley&Sons 1986
[1] Šolc,F., Václavek, P., Vavřín, P., Řízení a regulace II, Studijní materiály, Brno, FEKT VUT Brno 2009.
[2] Blaha, P., Vavřín, P., Řízení a regulace 1. Studijní materiály Brno, FEKT VUT Brno 2009.
[3] Klobouček, J., et al. (2007). Základy aplikované kybernetiky cvičení. Liberec, Technická univerzita v Liberci.
[4] Štecha J., Havlena V.: Teorie dynamických systémů. Praha, ČVUT 2005.
[5] Razím, M., Štecha, J., Nelineární systémy., Praha, ČVUT, 1997. 204 s. ISBN 80-01-01663-3.
[6] Štecha, J. Optimální rozhodování a řízení. Praha, ČVUT, 2004, ISBN 80-01-03010-5.
[7] Šlégl Z.: Základy kybernetiky. Plzeň, ZČU 2002
[8] Štecha,J.: Teorie automatického řízení I. Praha, ČVUT 1990.
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Exercises evaluation and ExaminationCredit and Examination100 (100)51
        Exercises evaluation and ExaminationCredit35 (35)10
                TestOther task type25 9
                ProjektProject10 1
        ExaminationExamination65 (65)16
                Teoretická částOther task type20 5
                Praktická částOther task type35 10
                Ústní zkouškaOral examination10 1