Skip to main content
Skip header

Control Systems Theory and Design

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code450-4001/01
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *Second Cycle
Year of Study *First Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites There are no prerequisites or co-requisites for this course unit
Name of Lecturer(s)Personal IDName
OZA77doc. Ing. Štěpán Ožana, Ph.D.
Summary
There are explaining designs of continuos-time and discrete-time linear control systems. Learners are introduce on nonlinear feedback control systems analyze and design - base nonlinear characteristics, stability and design. Learners are introducing also on optimal control systems - methods of optimization and their using. In the last part learners are introduce on adaptive and learning control systems.
Learning Outcomes of the Course Unit
The goal of subject is introduce students on control systems design. This part is needed for studying the branch of study Measurement and Control.Students will be ready for practical analyzes and designs of linear and nonlinear feedback control systems using computers and simulation program MATLAB and SIMULINK. They will be also ready for practical designs of optimal and adaptive feedback control systems This subject is suitable for students another branches of study, which want familiarize control system theory.
Course Contents
Lectures:

1. Introduction. Definition of the content and extent of the subject, prerequsites, connections. Function and objectives of the closed-loop control circuit.
2. Continuous control design: Open-loop shaping.
3. Continuous control design: Ziegler-Nichols Method and its modifications, Modulus Optimum Method, optimization-based methods.
4. Continuous control design: Other various methods.
5. Practical aspects of application of PID controllers.
6. Cascade control circuits I. Control circuit with secondary process variable, control circuit with secondary manipulated variable.
7. Cascade control circuits II. Disturbance-rejection control circuit, internal model control (IMC).
8. Multivariable control circuits. Decoupling.
9. State-space control design. Pole-placement method. Systems with an observer.
10. Discrete control design. Discretization of PID controllers. Algebraic design methods.
11. Nonlinear Control Systems I. Basic methods of non-linear control design.
12. Nonlinear Control Systems II. Advanced methods of non-linear control design.
13. Static optimization and their use in the field of control theory.
14. Dynamic optimization and their use in the field of control theory.

Exercises:

1. Introduction. Safety training, organization of the semester, lab rules.
2. Continuous control design: Open-loop shaping. Design and Simulation on PC.
3. Continuous control design: Ziegler-Nichols Method and its modifications. Design and simulation on a PC - laboratory exercise.
4. Continuous control design: Modulus Optimum Method, optimization-based methods. Design and simulation on PC - laboratory exercise.
5. Synthesis of continuous controllers: selected other methods, design and simulation on a PC - laboratory exercise.
6. Continuous control design: Self-reliant work on a Case Study - Laboratory exercise.
7. Cascade control circuits. Design and Simulation on PC - Laboratory Exercise.
8. Multivariable control circuits. Design and simulation on PC - laboratory exercise.
9. State-space control. Design and simulation on PC - laboratory exercise.
10. Discrete control. Design and simulation on PC - laboratory exercise.
11. Basic Nonlinear Control Systems. Design and simulation on PC.
12. Advanced Nonlinear Control Systems. Design and simulation on PC.
13. Static optimization. Design and simulation on a PC.
14. Dynamic optimization. Design and simulation on a PC.


Projects:

Each student is assigned a project to be processed by PC. Time consumption: appx. 20 hours. The title of the project: Synthesis of continuous and discrete, cascade and multivariable control circuits, static and dynamic optimization.
Recommended or Required Reading
Required Reading:
K.J. Astrom, R.M. Murray: Feedback Systems. Princeton University Press 2008
G.F. Franklin, J.D. Powell, A.E: Feedback Control of Dynamic Systems. Adison-Wesley 2002

[1] Srovnal,V: Regulační systémy. Učební text a návody do cvičení. VŠB-TUO, FEI, 2012.
[2] Šolc, F., Václavek, P., Vavřín, P. Řízení a regulace II. Brno, VUT Brno, 2009.
[3] Balátě, J. (2004). Automatické řízení. Praha, BEN - technická literatura.
[4] Šulc, B. and M. Vítečková (2004). Teorie a praxe návrhu regulačních obvodů. Praha, Vydavatelství ČVUT.
[5] Šulc, B. (1992). Teorie automatického řízení II : spojitá a diskrétní regulace. Praha, Ediční středisko ČVUT.
Recommended Reading:
Franklin,G.F.,at all.:Digital Control of Dynamic Systems. Adison-Wesley 1992
Golnaraghi, F., Kuo, B.C., Automatic Control System, (9th Edition), John Wiley & Sons, Inc. 2010
Lewis,F.L.: Optimal Control. John Wiley&Sons 1992
Ogata, K., Modern Control Engineering. (5th Edition), Prentice-Hall 2009
Ogata,K., Discrete-time Control Systems. (2nd Edition), Prentice-Hall 1995
Shinners,S.M.:Modern Control System Theory and Design. John Wiley&Sons 1986
Blaha, P., Vavřín, P. Řízení a regulace I. Brno, VUT Brno 2005,
Kotek, Z. - Razím, M.: Teorie nelineárních, optimálních a adaptivních řídicích systémů. Praha, ČVUT 1990.
Razím, M. - Štecha, J., Nelineární systémy., Praha, ČVUT, 1997. 204 s. ISBN 80-01-01663-3.
Šlégl Z.: Základy kybernetiky. Plzeň, ZČU 2002
Štecha, J. Optimální rozhodování a řízení. Praha, ČVUT, 2004, ISBN 80-01-03010-5.
Štecha,J.: Teorie automatického řízení I. Praha, ČVUT 1990.
Štecha J., Havlena V.: Teorie dynamických systémů. Praha, ČVUT 2005.
Štecha, J.-Horáček,P.: Optimální řídicí systémy. Praha, ČVUT 1989
Planned learning activities and teaching methods
Lectures, Individual consultations, Experimental work in labs, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Exercises evaluation and ExaminationCredit and Examination100 (100)51
        Exercises evaluationCredit35 (35)10
                TestOther task type25 9
                ProjektProject10 1
        ExaminationExamination65 (65)16
                Teoretická částOther task type20 5
                Praktická částOther task type35 10
                Ústní zkouškaOral examination10 1