Skip to main content
Skip header

Theory of Electronic Circuits

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code420-4001/01
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *Second Cycle
Year of Study *First Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites There are no prerequisites or co-requisites for this course unit
Name of Lecturer(s)Personal IDName
PUN10doc. Dr. Ing. Josef Punčochář
MOH35Ing. Jitka Mohylová, Ph.D.
Summary
Admittance models of modern amplifier structures; feedback; nodal analysis in
active - network theory; linear circuit analysis - frequency and time domain
(amplifiers, filters);harmonic oscillators and square wave generators; analog
multipliers; modulation and demodulation; signal sampling; A/D and D/A
convertor principles; degradation of electronic components.
Learning Outcomes of the Course Unit
After completing this course, the student should be able to
analyze and construct electronic circuits (amplifiers, filters, oscillators,convertors, ...) with real active circuit elements:
operational amplifier;
transconductance amplifier;
transimpedance amplifier;
current conveyor;
analog multiplier
Course Contents
Lectures:
History of electronics; basic models and theorems (immittance functions, Thevenin and Norton´s theorems, equivalent input and output impedances); quiescent point - as common problem; linearization.
Quiescent point of basic active tripole (BJT, FET, triode); their admittance models.
Modern amplifier structures (VFA, CFA, OTA, Northon´s amplifier, conveyors) and their admittance models.
Feedback theory, Nyquist stability criterion - application.
Generalized nodal voltage analysis (GNVA), admittance model of linear electronic circuit (related to feedback theory, stability - determination from the admittance model).
Analysis of amplifier and oscillator structures by means of GNVA.

Analysis of 2. order filters, principles of cascading - higher order filters - an example.
Rectifiers, voltage and current sources, logarithmic amplifier, analog multiplier.
Modulation, demodulation, signal sampling.
A/D and D/A converter principles; application of D/A convertor and analog multiplier for filters frequency controlling.
Compression amplifier, stabilization of oscillator amplitude.
Amplifiers and filters in the time domain, influence of an op amp slew rate and recovery time.
Relaxation structures (nonharmonic signals - square wave, triangular wave, saw-tooth) - triangle-to-sinusoid conversion.
Degradation of electronic elements with temperature, dissipated power (causes of degradation) - reduction of influence (abduction of heat - heat sink); structural and theoretical connection between analog and digital technics.





Exercises:
Quiescent point of basic active tripoles (BJT, FET, triode); definition of project.

Analysis of input differential stage, middle stage and output stage (follower, rail to rail) of OPA.
Admittance models of inverting and or noninverting structures (ideally frequency nondependent).
Admitance models of 2. order RC filters
Admitance models of RC oscillators.
Amplifiers - time domain; astable multivibrator with OPA.
Reports on projects.

Laboratories:
Verification of quiescent point definitions of basic tripoles.
Measuring of amplifier frequency responses.
Measuring of 2. order filter frequency responses.

Measuring of amplifiers in the time domain.
Measuring of 2. order filters in the time domain.
Measuring of OPA astable multivibrator properties; influence of slew rate; warming with frequency.
Reserve.


Computer labs:
Introduction to the MATLAB - connection with admittance models of electronic elements.
Amplifier frequency responses (ideally frequency nondependent)- influence of real OPA properties.
Frequency dependent structures (filters)- influence of real OPA properties in the frequency domain.
Amplifier time responses (ideally frequency nondependent)- influence of real OPA properties.
Frequency dependent structures (filters)- influence of real OPA properties in the time domain.

Elaboration of project.
Elaboration of project.
Recommended or Required Reading
Required Reading:
Mohylová,J. - Punčochář,J.: Theory of electronic circuits, VŠB - TU Ostrava, 2013
Punčochář, J.: Lineární obvody s elektronickými prvky. Skriptum, VŠB-TU Ostrava 2002
Mohylová, J.: Lineární obvody s elektronickými prvky -Sbírka příkladů, VŠB-TU Ostrava 2002
Vobecký, J. - Záhlava, V.: Elektronika (součástky a obvody, principy a příklady). Grada, Praha 2001
Punčochář,J.: Operační zesilovače v elektronice. BEN, Praha 2002 (5. vydání)
Žalud, V.: Moderní radioelektronika. BEN, Praha 2000
Recommended Reading:
Huelsman,L. P.: Basic circuit theory. Prentice - Hall Editions, Third edition, 1991
Mikulec, M.-Havlíček, V.: Basic circuit theory (I, II), ČVUT - Praha
Hejda, Z.-Punčochář, J.: The 1. order high-pass filter.Admittance models of modern linear amplifying structures. Transactions of the VŠB - Technical University of Ostrava, VI, 1, 2003, p.p. 50-55
Kolář, J.-Punčochář, J.: Band stop filtr with real operational amplifier.Transactions of the VŠB - Technical University of Ostrava, VI, 1, 2003, p.p. 92-100
Mohylová, J.: Influence of inverter vector error on common mode signal transmission of differential amplifier. http://www.elektrorevue.cz/index.php.en
Punčochář,J.: Operační zesilovače - historie a současnost. BEN, Praha 2002
Dostál, J.: Operační zesilovače. BEN, Praha 2005
Horowitz,P.- Hill,W.: The art of electronics, Cambridge University Press Biolek, D.: Řešíme elektronické obvody. BEN, Praha 2004
Hájek, K. - Sedláček, J.: Kmitočtové filtry. BEN, Praha 2002
Humlhans, J.: Nábojové pumpy. BEN, Praha 2002
Aksenov, A. I.-Gluškova, D. N.-Ivanov, V. I.: Chlazení polovodičových součástek. SNTL, Praha 1975
Punčochář, J.:Odezva operačního zesilovače na napěťový skok. http://www.elektrorevue.cz
Punčochář, J.:Astabilní obvod s reálnými operačními zesilovači. http://www.elektrorevue.cz
Punčochář, J.:Dolní propusti Sallen - Key s reálnými operačními zesilovačii. http://www.elektrorevue.cz
Mohylová, J.: Vliv vektorové chyby invertoru na přenos souhlasné složky signálu diferenčního zesilovače. http://www.elektrorevue.cz
Kolář, J.:Analýza vlivu kmitočtových vlastností OZ na vybrané pásmové zádrže druhého řádu. http://www.elektrorevue.cz

Planned learning activities and teaching methods
Lectures, Individual consultations, Tutorials, Experimental work in labs, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Exercises evaluation and ExaminationCredit and Examination100 (100)51
        Exercises evaluationCredit44 26
        ExaminationExamination56 7