Skip to main content
Skip header

Optical Atmospheric Communications

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code440-4211/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
NED086doc. Ing. Jan Nedoma, Ph.D.
Summary
Subject deals with optical communications in free space. Attention is dedicated to directional optical connections and ordinary diffusion optical nets. Significant part content is orientated to IrDa transmission. Basic technologies will be described together with devices, properties of optical communications systems and influence of atmosphere on transmission signals.
Learning Outcomes of the Course Unit
Understand the basic principles of optical atmospheric communication and their differences in comparison to fiber optical communications.
Learning outcomes are set so that the students are able to identify and apply tasks in the field of optoelectronics and fiberless commnucations.
Course Contents
1. Introduction - technology overview, system configuration, history of ir communication systems, optical fiberless channel, attenuation budget
2. Atmosphere as a transmission medium - atmosphere properties and its influence to transmission properties, attenuation effects in atmosphere, scintillation
3. Safety rules by atmospherical communications - influence of parasitic lights on transmission, influence of sunshine, multiray disoersion, characteristics of human eye, laser classes, holographic diffusers, comparison of LD and LED, specialities of outside communication systems
4. Introdustion of optical concetrators - elements of ray optics, fundamentals of energy optics, Fermat principle, polarisation of light
5. Optical concentrators - concentrator overview, demands on ir receivers, optical filters, ideal concentrator, fresnel lenses, hemispherical concentrators, parabolic concentrators,
6. Dielectrical concentrators based on total reflection, - characteristics, geometrical amplification, maximum of acceptance angle, concetrator comparison, another shapes of concentrators with total reflection
7. Optical transmitters for fiberless communications,- basics of transmitter design, optical demands to optical sources, types of optical modulators, driver circuits for optical transmitters, timing circuits, control of transmitting power
8. Optical receivers for fiberless communications - basics of receiver design, selection of detectors, receiver noises, BER and receiver sensitivity, BW of optical receiver, signal amplifiers,
9. Modulation, coding, multile usage of transmission media - analog, pulse and digital modulation, types of modulation and their sensitivity to noises of communication channel, access techniques to atmospherical channel
10. IrDA protocols - standards of fiberless transmissions, overview of IrDA standards, protocols for physical layer, IrLM protocol, IA3 protocol, Tiny T protocol
11. Introduction of Ir networks - network achitecture, specification of optical fiberless networks, Ad hoc networks, QoS of fiberless optical networks, future trends in optical atmospherical communications
Recommended or Required Reading
Required Reading:
LAMBERT, S. G. a W. L. CASEY. Laser communications in space. Boston: Artech House, c1995 - xix, 390 s. ISBN 0-89006-722-8.
RAMIREZ-INIGUEZ, R., S. M. IDRUS a Z. SUN. Optical wireless communications: IR for wireless connectivity. Boca Raton: CRC Press, c2008 - xxxi, 344 s. ISBN 978-0-8493-7209-4.
HEMMATI, H. Deep space optical communications. Hoboken: Wiley, c2006. ISBN 0-470-04002-5.
VITÁSEK, Jan. Optické atmosférické komunikace - skripta. Ostrava: ESF, 2014.
LAMBERT, S. G. a W. L. CASEY. Laser communications in space. Boston: Artech House, c1995 - xix, 390 s. ISBN 0-89006-722-8.
RAMIREZ-INIGUEZ, R., S. M. IDRUS a Z. SUN. Optical wireless communications: IR for wireless connectivity. Boca Raton: CRC Press, c2008 - xxxi, 344 s. ISBN 978-0-8493-7209-4.
HEMMATI, H. Deep space optical communications. Hoboken: Wiley, c2006. ISBN 0-470-04002-5.
Recommended Reading:
ANDERSON, D. R., L. JOHNSON a F. G. BELL. Troubleshooting Optical fiber networks. Elsevier Academic Press, USA, 2004. ISBN 0-12-0586614.
SALEH, B. E. A. a M. C. TEICH. Fundamentals of Photonics. New Yersey: Wiley and Sons, 2007. ISBN 978-0-471-35832-9.
BURES, J. Guided Optics. Wieheim: Wiley and Sons, 2009. ISBN 978-3-527-407796-5.
VITÁSEK, Jan. Optické atmosférické komunikace - skripta. Ostrava: ESF, 2014.
ANDERSON, D. R., L. JOHNSON a F. G. BELL. Troubleshooting Optical fiber networks. Elsevier Academic Press, USA, 2004. ISBN 0-12-0586614.
SALEH, B. E. A. a M. C. TEICH. Fundamentals of Photonics. New Yersey: Wiley and Sons, 2007. ISBN 978-0-471-35832-9.
BURES, J. Guided Optics. Wieheim: Wiley and Sons, 2009. ISBN 978-3-527-407796-5.
Planned learning activities and teaching methods
Lectures, Tutorials, Experimental work in labs
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit30 (30)15
                Lab. 1Laboratory work5 1
                Lab. 2Laboratory work5 1
                Lab. 3Laboratory work5 1
                Lab. 4Laboratory work5 1
                ProjektProject10 1
        ExaminationExamination70 36