Skip to main content
Skip header

Sensors and Measurement

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code450-2003/03
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
BIL45prof. Ing. Petr Bilík, Ph.D.
VAL47Ing. David Vala, Ph.D.
Summary
The measurement and control systems present subgroup of common information systems systems for processing of information. Each system for processing of information consists of 3 basic parts: input transducer, modification unit and output transducer.
The role of input transducer in the case of the measurement and control systems is to identify the information discrabing the measurement resp. control system state and to transform them to the form suitabe for processing in the next block. Nowadays the electrical signal is preferable form input transducer (sensor) is the primary source of information about measurement resp. control systém and determines the characteristic of entire systém. In the most caces it is the most expensive part of entire systém. The aim of subject is to present basic principles used for conversion of nonelectrical quantities to electrical signal, basic properties and designs of input transducers and methods of nonelectrical quantities measurement. The abovementioned knowladges enable students select the proper sensors for implementation in measurement and control systems.
Learning Outcomes of the Course Unit
The aim of the subject is to present basic pronciples used for convension of nonelectrical quantities to electrical signal, basic properties and designs of input transducers and methods of nonelectrical quantities measurement used in the industry practice.
Course Contents
Lectures:
1.Introduction to the nonelectrical quantities measurement. Role and position of sensors in measurement and control systems. Generation of sensors and their classification.
2.Physical and mathematical model of sensor. Statical and dynamical properties of sensors.
3.Transfer of information from sensor. Connection wiring influence. Unification of sensor signals. Method of correction of sensor characteristic.
4.Physical principles of sensors. Resistance position sensors. Strain gauges. Resistance temperature detectors (RTDs).
5.Capacitive-type, inductance-type and inductive-type sensors.
6.Magnetic, piezoelectric and pyroelectric sensors. Thermoelectric sensor.
7.Photoelectric sensor. Radiation pyrometers. Thermovision.
8.Microelectronic sensors. Integrated and SMART sensors. The influence of sensor technology to their design. MEMS sensors.
9.Position and movement measurement. Level measurement.
10.Force and strain measurement. Acceleration measurement. Pressure and vacuum measurement.
11.Gas and fluid flow measurement.
12.Temperature measurement. Heat consumption measurement.
13.Visible light and nuclear-particle radiation measurement.
14. Chemical quantities measurement. Gas and liquid composition measurement. Humidity measurement pH measurement. Emission measurement.


Laboratories:
1.Laboratory code introduction, safety training
2.Static characteristic of resistance position sensor. Load and connecting wiring influence on the static characteristic.
3.Dynamic characteristic of thermocouple. The influence of thermocouple design to the dynamic characteristic.
4.Elimination of temperature sensitivity of strain gauge.
5.The influence of negative feedback on sensor characteristic. Magnetoelectric sensor for current measurement.
6.Consultation for lab excercises.
7.Substitute lab lesson.
8.Rotational velocity measurement. The demonstration of influence of sensor presence to measurement system
9.Capacitive sensors. The influence of connecting wiring on statical characteristic. Signal and transmition to the processing unit.
10.Photoelectrical position sensors. Incremental shaft enconders. Digital shaft encoder.
11.Heat consumption measurement.
12.Microelectronic accelerometer.
13.Imaging CCD sensors. Transmition of information from imaging sensor and their processing.
14.Consultation for lab excercises. Substitute lab lesson.Credit.
Recommended or Required Reading
Required Reading:
1.KREIDL, Marcel. Technická diagnostika: senzory, metody, analýza signálu. 1. vyd. Praha: BEN, 2006, 406 s. Senzory neelektrických veličin. ISBN 80-7300-158-6.
1. DUBEC, Miroslav a Jaromír SKOTNICA. Senzory a měření neelektrických veličin. Učební text. Ostrava: VŠB, FEI, K450, 2012, 318 s.
2. Master books on sensors: modular courses on modern sensors Leonardo da Vinci project CZ/PP-134026. Editor Alois Tipek, Pavel Ripka. Praha: BEN - technical literature, 2003, 1 sv. ISBN 80-7300-129-2.

Recommended Reading:
1. RIPKA, Pavel a Alois TIPEK. Modern sensors handbook. Newport Beach, CA: ISTE USA, 2007, xviii, 518 p. ISBN 1905209665.
1. ĎAĎO S. Senzory a převodníky. 1. vyd. Praha: Vydavatelství ČVUT, 2005, 136 s. ISBN 80-01-03123-3.
2. KREIDL, Marcel. Měření teploty: senzory a měřicí obvody. 1. vyd. Praha: BEN - technická literatura, 2005, 239 s. Senzory neelektrických veličin, 1. díl. ISBN 8073001454.
3. ĎAĎO, Stanislav, Ludvík BEJČEK a Antonín PLATIL. Měření průtoku a výšky hladiny. 1. vyd. Praha: BEN - technická literatura, 2005, 447 s. ISBN 80-7300-156-x.
4. LYSENKO, Vladimír. Detektory pro bezdotykové měření teplot. 1. vyd. Praha: BEN - technická literatura, 2005, 153 s. Senzory neelektrických veličin. ISBN 80-7300-180-2.
Planned learning activities and teaching methods
Lectures, Experimental work in labs, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit30 10
        ExaminationExamination70 35