Skip to main content
Skip header

Optical Fiberless Systems

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code440-4227/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Choice-compulsory type A
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
LAT04Ing. Jan Látal, Ph.D.
Summary
The subject is focused on selected aspects of optical communication systems in the free space. The emphasis is laid on directed optical fiberless systems operated in the outdoor space as well as optical systems operating in the visible spectral range. Other part of this course is then dealing with modern trends of hybrid fiberless photonic systems also utilizing radio data transmission or satellite/space communication. Significant part of the course is also oriented on IrDa transmissions. During the lectures students will familiarize with main technologies, elements (LED/LD light sources, photodetectors), noises in optical communications or modulation techniques. Influence of atmospheric transmission environment on the optical beam data transfer will be presented as well.
Learning Outcomes of the Course Unit
The subject main aim is to understand optical fiberless systems and their differences to optical fiber communication. Study materials are prepared so that students will be able to understand physical principles connected with this communication field as well as identify, apply and solve tasks from the field of optoelectronics and optical fiberless communications.
Course Contents
Lectures:
1) Introduction to optical fiberless systems.
2) Basics of geometrical optics (lences, focal point, imaging equations, etc.).
3) Basics of indoor and outdoor optical fiberless systems.
4) Optical transceivers for fiberless systems.
5) Optical receivers for fiberless systems.
6) Modulations, link codes and multi point access.
7) Atmospheric transmission environment.
8) Communication in the infrared spectra.
9) Communication in the visible spectra.
10) Safety measures in atmospheric communication.
11) Hybrid fiberless radio-optical communication systems.
12) Optical satellite communication.

Tutorials:
First introductory tutorial, work safety in the laboratory and safety operation with laser beam in the free space.
Five laboratory tasks during semester.
One tutorial is reserved for tests during semester and spare laboratory measurements.
The last tutorial in the semester is reserved for spare test if some students need it.

Laboratory tasks:
1) Measurement of laser radiation wavelength by difraction grating.
2) Measurement of artificial atmospheric phenomena influence on communication parameters of optical fiberless systems.
3) Measurement of fog influence on laser beam.
4) Measurement of laser beam shape changes due to turbulent environment.
5) Measurement of spectral and time properties of light radiation sources.
Recommended or Required Reading
Required Reading:
[1] HEMMATI, H. Deep space optical communications. Hoboken: Wiley, c2006. ISBN 0-470-04002-5.
[2] MAJUMDAR, Arun K. Advanced free space optics (FSO): a systems approach. New York: Springer, 2015. Springer series in optical sciences, v. 186. ISBN 978-1-4939-0917-9.
[3] MAJUMDAR, Arun K., Zabih GHASSEMLOOY a A. Arockia Bazil RAJ, ed. Principles and applications of free space optical communications. London: The Institution of Engineering and Technology, 2019. IET telecommunications series, 78. ISBN 978-1-78561-415-6.
[4] GHASSEMLOOY, Zabih, Luis Filipe Mesquita Nero Moreira ALVES, Stanislav ZVÁNOVEC a Mohammad Ali KHALIGHI, ed. Visible light communications: theory and applications. Boca Raton: CRC Press, Taylor & Francis Group, [2017]. ISBN 978-1-4987-6753-8.
[5] GHASSEMLOOY, Zabih, W. POPOOLA a S. RAJBHANDARI. Optical wireless communications: system and channel modelling with MATLAB. Second edition. Boca Raton: CRC Press, Taylor & Francis Group, [2018]. ISBN 978-1-4987-4269-6.
[1] VITÁSEK, Jan. Optické atmosférické komunikace - skripta. Ostrava: ESF, 2014.
[2] PECHAČ, Pavel a Stanislav ZVÁNOVEC. Základy šíření vln pro plánování pozemních rádiových spojů. Praha: BEN - technická literatura, 2007. ISBN 978-80-7300-223-7.
[3] HEMMATI, H. Deep space optical communications. Hoboken: Wiley, c2006. ISBN 0-470-04002-5.
[4] MAJUMDAR, Arun K. Advanced free space optics (FSO): a systems approach. New York: Springer, 2015. Springer series in optical sciences, v. 186. ISBN 978-1-4939-0917-9.
[5] MAJUMDAR, Arun K., Zabih GHASSEMLOOY a A. Arockia Bazil RAJ, ed. Principles and applications of free space optical communications. London: The Institution of Engineering and Technology, 2019. IET telecommunications series, 78. ISBN 978-1-78561-415-6.
Recommended Reading:
[1] ANDERSON, D. R., L. JOHNSON a F. G. BELL. Troubleshooting Optical fiber networks. Elsevier Academic Press, USA, 2004. ISBN 0-12-0586614.
[2] SALEH, B. E. A. a M. C. TEICH. Fundamentals of Photonics. New Yersey: Wiley and Sons, 2007. ISBN 978-0-471-35832-9.
[3] BURES, J. Guided Optics. Wieheim: Wiley and Sons, 2009. ISBN 978-3-527-407796-5.
[4] LAMBERT, S. G. a W. L. CASEY. Laser communications in space. Boston: Artech House, c1995 - xix, 390 s. ISBN 0-89006-722-8.
[5] RAMIREZ-INIGUEZ, R., S. M. IDRUS a Z. SUN. Optical wireless communications: IR for wireless connectivity. Boca Raton: CRC Press, c2008 - xxxi, 344 s. ISBN 978-0-8493-7209-4.
[6] ABDALLA, Abdelgader M., Gonzalez Jonathan RODRIGUEZ, Issa Tamer ELFERGANI a António TEIXEIRA, ed. Optical and wireless convergence for 5G networks. Hoboken: Wiley, 2020. ISBN 978-1-119-49158-3.
[1] ANDERSON, D. R., L. JOHNSON a F. G. BELL. Troubleshooting Optical fiber networks. Elsevier Academic Press, USA, 2004. ISBN 0-12-0586614.
[2] SALEH, B. E. A. a M. C. TEICH. Fundamentals of Photonics. New Yersey: Wiley and Sons, 2007. ISBN 978-0-471-35832-9.
[3] BURES, J. Guided Optics. Wieheim: Wiley and Sons, 2009. ISBN 978-3-527-407796-5.
[4] LAMBERT, S. G. a W. L. CASEY. Laser communications in space. Boston: Artech House, c1995 - xix, 390 s. ISBN 0-89006-722-8.
[5] RAMIREZ-INIGUEZ, R., S. M. IDRUS a Z. SUN. Optical wireless communications: IR for wireless connectivity. Boca Raton: CRC Press, c2008 - xxxi, 344 s. ISBN 978-0-8493-7209-4.
[6] ABDALLA, Abdelgader M., Gonzalez Jonathan RODRIGUEZ, Issa Tamer ELFERGANI a António TEIXEIRA, ed. Optical and wireless convergence for 5G networks. Hoboken: Wiley, 2020. ISBN 978-1-119-49158-3.
Planned learning activities and teaching methods
Lectures, Tutorials, Experimental work in labs
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit45 20
        ExaminationExamination55 20