Skip to main content
Skip header

SW Tools in Optical Communications

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code440-4229/01
Number of ECTS Credits Allocated3 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
LAT04Ing. Jan Látal, Ph.D.
Summary
The focus of the course is set so that attendees will obtain new competences in usage of software tools for simulations of various tasks from the field of optical fiber or fiberless communication systems. Emphasis is also put on geometrical optics in form of lenses and other optical components simulations as well as beam tracking during solving of laboratory tasks.
Learning Outcomes of the Course Unit
The aim of subject is to introduce modern software tools for simulation of optical components, optical communication and optoelectronics to the students. The main software applications used during classes are LightTools, CODE V and tool package from Optiwave. Students are expected to perform simulations, identify and solving problems during tutorials.
Course Contents
1. Introduction to LightTools software (object imaging in 3D space, work in coordinate system, design of mechanical and optical 3D object, basic simulation of beam propagation through designed objects).

2. Optical sources modeling in LightTools (optical sources modeling using elements from libraries, defining own sources, simulation of light distribution in space, combining optical sources with other optical components).

3. LightTools and geometrical optics simulations (explanation of basic terms from geometrical optics, design of mirroring plane in LightTools, design of lens, parameter definition, design of lens system, design of optical fiber model).

4. Basic operation in CodeV software tool (work procedures in CodeV, coordinates system and sign convention, field specification and reference beams, usage of Lens Data Manager plugin, basic analysis of optical systems).

5. Simulation of geometrical optics in CodeV (relation between geometrical optics and CodeV environment, design of lens system, 2D and 3D imaging, work and design of optical components via Command Window, design of optical system utilizing lenses and mirrors).

6. Basic operation in Optiwave software (design and field distribution in Optiwave OptiSystem, work with graphic interface, Sweep regime and its usage for simulations, setting of global variables for effective simulation settings, export and import of data files for simulations, graphic processing of simulation results, work with BER, power, dispersion, SNR, etc. components).

7. Light sources simulation for optical communication (simulation of optical communication systems with different optical radiation sources, LED vs. Laser source, light sources parameters according to datasheets, spectral analysis).

8. Simulation of optical communication system with different photodetector types (PN, PIN, APD photodetectors, photodetector setting for simulations based on datasheets, usage of optimization functions).

9. Simulation of optical communication systems with multiplexers and demultiplexers (design of xWDM network scheme, simulation optimization functions, media access setting, usage of different amplifier types).

10.-12. Simulation of optical access networks (demonstration of complete xPON network design – GEPON, GPON, WDM-PON, XG-PON, NG-PON, TWDM-PON, etc., network design with different modulations, bit rates, dispersion effects, linear and nonlinear effects on data transmission).

13. Simulation of fiberless optical systems in Optiwave software (topology design for indoor or outdoor free space systems, usage of xWDM for fiberless optical system).

14. Presentation and defense of semester projects.
Recommended or Required Reading
Required Reading:
[1] YU, Jianjun, Xinying LI a Junwen ZHANG. Digital signal processing for high-speed optical communication. Singapore: World Scientific, [2018]. ISBN 978-981-323-397-3.
[2]MAHAJAN, Virendra N. Fundamentals of geometrical optics. Bellingham: SPIE Press, c2014. ISBN 978-0-8194-9998-1.
[3]BENTLEY, Julie L. a Craig OLSON. Field guide to lens design. Bellingham: SPIE Press, c2012. SPIE field guides, v. FG27. ISBN 978-0-8194-9164-0.
[4] GROBE, Klaus a Michael EISELT. Wavelength division multiplexing: a practical engineering guide. Hoboken: Wiley, c2014. Wiley series in pure and applied optics. ISBN 978-0-470-62302-2.
[5] KUMAR, Shiva a M. Jamal DEEN. Fiber optic communications: fundamentals and applications. Chichester: Wiley, 2014. ISBN 978-0-470-51867-0.
[1] BOHÁČ, Leoš a Michal LUCKI. Optické komunikační systémy. V Praze: České vysoké učení technické, 2010. ISBN 978-80-01-04484-1.
[2] NOVOTNÝ, Karel. Optická komunikační technika. Vyd. 3. V Praze: Nakladatelství ČVUT, 2007. ISBN 978-80-01-03920-5.
[3] LAFATA, Pavel a Jiří VODRÁŽKA. Optické přístupové sítě a přípojky FTTx. Praha: České vysoké učení technické v Praze, 2014. ISBN 978-80-01-05463-5.
[4] FUKA, Josef a Bedřich HAVELKA. Optika a atomová fyzika. I, Optika. Praha: Státní pedagogické nakladatelství, 1961.
Recommended Reading:
[1] WILSON, Sarah Kate, Stephen G. WILSON a Ezio BIGLIERI, ed. Transmission techniques for digital communications. Amsterdam: Elsevier, Academic Press, [2016]. Academic Press library in mobile and wireless communications. ISBN 978-0-12-398281-0.
[2] LEIS, John. Communication systems principles using MATLAB. Hoboken: Wiley, 2018. ISBN 978-1-119-47067-0.
[3] LI, Xiujian, Zhengzheng SHAO, Mengjun ZHU a Junbo YANG. Fundamentals of optical computing technology: forward the next generation supercomputer. Singapore: Springer, [2018]. ISBN 978-981-10-3847-1.
[4] LIN, Psang Dain. New computation methods for geometrical optics. Singapore: Springer, c2014. Springer series in optical sciences, v. 178. ISBN 978-981-4451-78-9.
[5] PARADISI, Alberto, Rafael Carvalho FIGUEIREDO, Andrea CHIUCHIARELLI a Eduardo de SOUZA ROSA, ed. Optical communications: advanced systems and devices for next generation networks. Cham: Springer, [2019]. Telecommunications and information technology. ISBN 978-3-319-97186-5.
[1] LAFATA, Pavel a Jiří VODRÁŽKA. Optické přístupové sítě FTTx a NGA. 2. přepracované vydání. Praha: České vysoké učení technické v Praze, 2019. ISBN 978-80-01-06552-5.
[2] BAJER, Jiří. Optika 1. Olomouc: Univerzita Palackého v Olomouci, 2015. Učebnice. ISBN 978-80-244-4532-8.
[3] ŘÍMAL, Jaroslav. Fyzika - geometrická optika. Praha: Vydavatelství ČVUT, 1980.
[4] HAVELKA, Bedřich. Geometrická optika. II. díl. Praha: Nakladatelství Československé akademie věd, 1956.
[5] FILKA, Miloslav. Optoelektronika pro telekomunikace a informatiku. Druhé, rozšířené vydání. Brno: Prof. Ing. Miloslav Filka, Csc. a kol., 2017. ISBN 978-80-86785-14-1.
Planned learning activities and teaching methods
Tutorials, Experimental work in labs, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Graded creditGraded credit100 51