* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code | 9600-0016/01 | |||||
---|---|---|---|---|---|---|

Number of ECTS Credits Allocated | 4 ECTS credits | |||||

Type of Course Unit * | Optional | |||||

Level of Course Unit * | Second Cycle | |||||

Year of Study * | First Year | |||||

Semester when the Course Unit is delivered | Summer Semester | |||||

Mode of Delivery | Face-to-face | |||||

Language of Instruction | Czech | |||||

Prerequisites and Co-Requisites | Course succeeds to compulsory courses of previous semester | |||||

Name of Lecturer(s) | Personal ID | Name | ||||

TOM064 | Ing. Jiří Tomčala, Ph.D. | |||||

LAM05 | prof. RNDr. Marek Lampart, Ph.D. | |||||

Summary | ||||||

This is a basic course in quantum computing, which deals with the basic elements of quantum computational theory without assuming knowledge of quantum physics. The introduction to quantum theory from the point of view of computer science begins with an explanation of the most necessary concepts in order to demonstrate several elementary examples of quantum acceleration, as well as basic applications: Shor's factorization and Grover's search algorithm and error correction. Theoretical knowledge is then demonstrated practically on a quantum computer (simulator) - Atos myQLM or IBM Qiskit.
The course is intended for students of the 1st and 2nd year of master's studies at VŠB-TU Ostrava and the necessary prerequisite is knowledge of linear algebra. | ||||||

Learning Outcomes of the Course Unit | ||||||

The aim of the course is to master the basic concept of quantum computing without knowledge of quantum physics and to master the basic tasks associated with register programming.
| ||||||

Course Contents | ||||||

Lectures:
1. Basic properties of qubit, Bloch sphere 2. Qubits and their states, Dirac notation 3. Reversible qubit operations, qubit measurements 4. Entanglement 5. Deutsch–Jozsa algorithm, Bernstein-Vazirani algorithm 6. Simon's Algorithm 7. Grover's searching algorithm 8. Quantum Fourier transform, Shor's factorization algorithm 9. RSA decoding 10. Simplified example of quantum error correction 11. Error diagnostics, error correcting codes 12. Quantum cryptography and a simple example of chaining Exercises: 1. Installation of a quantum simulator and connection to a quantum computer (QLM, Qiskit). 2. - 3. Tensor algebra and its interpretation of qubit. 4. - 12. Practical implementation of algorithms discussed in the lecture. Projects: Individual work on the implementation of a quantum algorithm on selected quantum simulator or computer. | ||||||

Recommended or Required Reading | ||||||

Required Reading: | ||||||

1. MERMIN, N. D. Quantum Computer Science: An Introduction. Cambridge University Press, 2007. ISBN-13: 978-0521876582, ISBN-10: 0521876583.
2. NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2010. ISBN-13: 978-1107002173, ISBN-10: 9781107002173. | ||||||

1. MERMIN, N. D. Quantum Computer Science: An Introduction. Cambridge University Press, 2007. ISBN-13: 978-0521876582, ISBN-10: 0521876583.
2. NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2010. ISBN-13: 978-1107002173, ISBN-10: 9781107002173. | ||||||

Recommended Reading: | ||||||

1. BENENTI, G.; CASATI, G.; ROSSINI, D.; STRINI, G. Principles of Quantum Computation and Information - A Comprehensive Textbook. World Scientific, 2018.
2. STRUBELL, E. An Introduction to Quantum Algorithms. COS498 - Chawathe, 2011. 3. ABHIJITH, J.; ADEDOYIN, A.; AMBROSIANO, J.; ANISIMOV, P.; BÄRTSCHI, A.; CASPER, W.; CHENNUPATI, G.; COFFRIN, C.; DJIDJEV, H.; GUNTER, D.; KARRA, S. ; LEMONS, N.; LIN, S.; MALYZHENKOV, A.; MASCARENAS, D.; MNISZEWSKI, S.; NADIGA, B.; O’MALLEY, D.; OYEN, D.; PAKIN, S.; PRASAD, L.; ROBERTS, R.; ROMERO, P.; SANTHI, N.; SINITSYN, N.; SWART, P. J.; WENDELBERGER, J. G.; YOON, B.; ZAMORA, R.; ZHU, W.; EIDENBENZ, S.; COLES, P. J.; VUFFRAY, M.; LOKHOV, A. Y. Quantum Algorithm Implementations for Beginners. Los Alamos National Laboratory USA, 2018. | ||||||

1. BENENTI, G.; CASATI, G.; ROSSINI, D.; STRINI, G. Principles of Quantum Computation and Information - A Comprehensive Textbook. World Scientific, 2018.
2. STRUBELL, E. An Introduction to Quantum Algorithms. COS498 - Chawathe, 2011. 3. ABHIJITH, J.; ADEDOYIN, A.; AMBROSIANO, J.; ANISIMOV, P.; BÄRTSCHI, A.; CASPER, W.; CHENNUPATI, G.; COFFRIN, C.; DJIDJEV, H.; GUNTER, D.; KARRA, S. ; LEMONS, N.; LIN, S.; MALYZHENKOV, A.; MASCARENAS, D.; MNISZEWSKI, S.; NADIGA, B.; O’MALLEY, D.; OYEN, D.; PAKIN, S.; PRASAD, L.; ROBERTS, R.; ROMERO, P.; SANTHI, N.; SINITSYN, N.; SWART, P. J.; WENDELBERGER, J. G.; YOON, B.; ZAMORA, R.; ZHU, W.; EIDENBENZ, S.; COLES, P. J.; VUFFRAY, M.; LOKHOV, A. Y. Quantum Algorithm Implementations for Beginners. Los Alamos National Laboratory USA, 2018. | ||||||

Planned learning activities and teaching methods | ||||||

Lectures, Tutorials, Project work | ||||||

Assesment methods and criteria | ||||||

Task Title | Task Type | Maximum Number of Points (Act. for Subtasks) | Minimum Number of Points for Task Passing | |||

Credit and Examination | Credit and Examination | 100 (100) | 51 | |||

Credit | Credit | 40 (40) | 20 | |||

Písemka 1 | Written test | 10 | 0 | |||

Písemka 2 | Written test | 10 | 0 | |||

Projekt | Project | 20 | 0 | |||

Examination | Examination | 60 | 11 |