Skip to main content
Skip header

Introduction to Quantum Computing

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code9600-0016/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *First Year
Semester when the Course Unit is deliveredSummer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
TOM064Ing. Jiří Tomčala, Ph.D.
LAM05prof. RNDr. Marek Lampart, Ph.D.
Summary
This is a basic course in quantum computing, which deals with the basic elements of quantum computational theory without assuming knowledge of quantum physics. The introduction to quantum theory from the point of view of computer science begins with an explanation of the most necessary concepts in order to demonstrate several elementary examples of quantum acceleration, as well as basic applications: Shor's factorization and Grover's search algorithm and error correction. Theoretical knowledge is then demonstrated practically on a quantum computer (simulator) - Atos myQLM or IBM Qiskit.

The course is intended for students of the 1st and 2nd year of master's studies at VŠB-TU Ostrava and the necessary prerequisite is knowledge of linear algebra.
Learning Outcomes of the Course Unit
The aim of the course is to master the basic concept of quantum computing without knowledge of quantum physics and to master the basic tasks associated with register programming.
Course Contents
Lectures:
1. Basic properties of qubit, Bloch sphere
2. Qubits and their states, Dirac notation
3. Reversible qubit operations, qubit measurements
4. Entanglement
5. Deutsch–Jozsa algorithm, Bernstein-Vazirani algorithm
6. Simon's Algorithm
7. Grover's searching algorithm
8. Quantum Fourier transform, Shor's factorization algorithm
9. RSA decoding
10. Simplified example of quantum error correction
11. Error diagnostics, error correcting codes
12. Quantum cryptography and a simple example of chaining

Exercises:
1. Installation of a quantum simulator and connection to a quantum computer (QLM, Qiskit).
2. - 3. Tensor algebra and its interpretation of qubit.
4. - 12. Practical implementation of algorithms discussed in the lecture.

Projects:
Individual work on the implementation of a quantum algorithm on selected quantum simulator or computer.
Recommended or Required Reading
Required Reading:
1. MERMIN, N. D. Quantum Computer Science: An Introduction. Cambridge University Press, 2007. ISBN-13: 978-0521876582, ISBN-10: 0521876583.
2. NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2010. ISBN-13: 978-1107002173, ISBN-10: 9781107002173.
1. MERMIN, N. D. Quantum Computer Science: An Introduction. Cambridge University Press, 2007. ISBN-13: 978-0521876582, ISBN-10: 0521876583.
2. NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2010. ISBN-13: 978-1107002173, ISBN-10: 9781107002173.
Recommended Reading:
1. BENENTI, G.; CASATI, G.; ROSSINI, D.; STRINI, G. Principles of Quantum Computation and Information - A Comprehensive Textbook. World Scientific, 2018.
2. STRUBELL, E. An Introduction to Quantum Algorithms. COS498 - Chawathe, 2011.
3. ABHIJITH, J.; ADEDOYIN, A.; AMBROSIANO, J.; ANISIMOV, P.; BÄRTSCHI, A.; CASPER, W.; CHENNUPATI, G.; COFFRIN, C.; DJIDJEV, H.; GUNTER, D.; KARRA, S. ; LEMONS, N.; LIN, S.; MALYZHENKOV, A.; MASCARENAS, D.; MNISZEWSKI, S.; NADIGA, B.; O’MALLEY, D.; OYEN, D.; PAKIN, S.; PRASAD, L.; ROBERTS, R.; ROMERO, P.; SANTHI, N.; SINITSYN, N.; SWART, P. J.; WENDELBERGER, J. G.; YOON, B.; ZAMORA, R.; ZHU, W.; EIDENBENZ, S.; COLES, P. J.; VUFFRAY, M.; LOKHOV, A. Y. Quantum Algorithm Implementations for Beginners. Los Alamos National Laboratory USA, 2018.
1. BENENTI, G.; CASATI, G.; ROSSINI, D.; STRINI, G. Principles of Quantum Computation and Information - A Comprehensive Textbook. World Scientific, 2018.
2. STRUBELL, E. An Introduction to Quantum Algorithms. COS498 - Chawathe, 2011.
3. ABHIJITH, J.; ADEDOYIN, A.; AMBROSIANO, J.; ANISIMOV, P.; BÄRTSCHI, A.; CASPER, W.; CHENNUPATI, G.; COFFRIN, C.; DJIDJEV, H.; GUNTER, D.; KARRA, S. ; LEMONS, N.; LIN, S.; MALYZHENKOV, A.; MASCARENAS, D.; MNISZEWSKI, S.; NADIGA, B.; O’MALLEY, D.; OYEN, D.; PAKIN, S.; PRASAD, L.; ROBERTS, R.; ROMERO, P.; SANTHI, N.; SINITSYN, N.; SWART, P. J.; WENDELBERGER, J. G.; YOON, B.; ZAMORA, R.; ZHU, W.; EIDENBENZ, S.; COLES, P. J.; VUFFRAY, M.; LOKHOV, A. Y. Quantum Algorithm Implementations for Beginners. Los Alamos National Laboratory USA, 2018.
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit40 (40)20
                Písemka 1Written test10 0
                Písemka 2Written test10 0
                ProjektProject20 0
        ExaminationExamination60 11