Skip to main content
Skip header

Numerical Methods for Designing Electrical Machines and Apparatuses

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code410-4205/05
Number of ECTS Credits Allocated7 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *First Year
Semester when the Course Unit is deliveredSummer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
KAC37doc. Ing. Petr Kačor, Ph.D.
Summary
Purpose of the study subject is centered towards new calculation methods and
methodology of the project at the power current electrotechnics specialized to
the electric machines and devices. On the particular examples are the students
apprised of creation of physical model, of entering important material
properties and specific boundary conditions, of solution, of processing of
caltulated data and their interpretation for a practical assimilation. These
calculations are realized through the Method of Finite Elements (FEM ) aided
by software equipment ANSYS.
Learning Outcomes of the Course Unit
Students use numerical method (FEM, etc.) for designing of electrical machines and devices by the help of suitable softwares (CAD, SOLIDWORKS, ANSYS, etc.)
Course Contents
Lectures:
Describtion, basic structure of CAD and FEM software, model, material constants, loadings, post-processing.
2D and 3D electric field excercises, boundary conditions, loading, solution, post-processing.
2D and 3D magnetic field excercises, boundary conditions, loading, solution, post-processing.
2D and 3D electromagnetic field excercises, boundary conditions, loading, solution, post-processing.
2D and 3D thermal field excercises, boundary conditions, loading, solution, post-processing.
Introduction to structural field solution, deformation, displacement, deflection, mechanical torque etc.
2D and 3D coupled-field simulation (electro-magnetic-thermal-structural).
Solution methods, direct and indirect method, element types, material constants.
Solution of CFD excercises, cooling, thermal fluid, liquids, gases

Projects:
Student has to make individual projects by the help of FEM.
FEM simulation of force acting on two parallel conductors
FEM simulation of AC current flowing
FEM simulation of static force characteristic of DC electromagnet

Computer labs:
Requirements for passing of laboratory excercises, semestral project,
Starting of software, utility menu, setting, memory management, import and export files, GUI.
Preprocessor - 2D and 3D model building, element types,material properties, macro.
2D and 3D model of plate capacitor, computing of capacitance, high-voltage insulator (electric field intensity, dielectric strength).
2D and 3D model of manetic circuit with permanent magnet (magnetic circuit with BH curve, solution of force effect).
2D model of coil (computing of inductance of air-coils and solenoids with magnetic core).
2D model 3ph bus-bars (force effect in short-circuit condition, skin-effect, distribution of magnetic field at 3ph circuit).
2D model of DC solenoid magnet (static force characteristic, influence of BH characteristic on final force).
2D model of transforer (warming of winding).
2D model of 1ph transformer, solution of magnetic field, warming of winding at nominal loading.
3D model of thermal release of circuit breaker (warming at over-current condition, force effect made by thermal deformation).
3D model of motor shaft (material properties, loading).
2D CFD model of transformer (natural and force cooling, influence of cooling ribs).
Recommended or Required Reading
Required Reading:
Mason, J.R.: Switch engineering handbook, New York, 1993
ANSYS Manual
Cassie, A.M: Introduction to the theory of circuit interruption, in: Trencham. H.: Circuit breaking, London, McGraw-Hill 1953
Gerszonowicz, H.: High-Voltage A.C. Circuit-Breakers.London,McGraw-Hill 1953
Greenwood,A.: Electrical transient in power systems.New York, Sydney, Toronto, Wiley Interscience, 1971.
Holm, R.: Electric Contacts Handbook. Berlin, Springer-Verlag 1958, 1967.
Jahn, R.G.:Physics of electric propulsion, New York McGraw-Hill 1968.
Batiwala, F. et al: Comparsion of arc extinguishing systems, inductive currents. Helsinki 1981.
Blower, R.W. et al: Vacuum circuit-breaker for distribution voltages. In: Symp. on h.v. switching equipment. Sydney 1979.
Mayer, D., Ulrych, B.: Základy numerického řešení elektrických a
magnetických polí.
V. Kolář, I. Němec, V. Kanický: FEM principy a praxe metody konečných prvků
Zienkiewicz, O.C. : The Finite Element Method In Engineering Science
Ansys Help System (podle aktuální verze programu)
Ansys User's Guide (podle aktuální verze programu)
Recommended Reading:
Burrage, L.M.: The operation of vacuum interrupters when tested at abnormal voltages, IEEE PAS 94, 1975.
Madenci, E., Guyen, I. - The Finite Element Method Applications in Engineering Using ANSYS, Springer, 2005, ISBN: 0387282890
Mayer, D., Ulrych, B.: Základy numerického řešení elektrických a
magnetických polí.
V. Kolář, I. Němec, V. Kanický: FEM principy a praxe metody konečných prvků
Zienkiewicz, O.C. : The Finite Element Method In Engineering Science
Ansys Help System (podle aktuální verze programu)

Ansys User's Guide (podle aktuální verze programu)
Planned learning activities and teaching methods
Lectures, Tutorials, Project work, Other activities
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit40 20
        ExaminationExamination60 11