Skip to main content
Skip header

Theory of Technological Processes

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code619-2010/01
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredSummer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites
PrerequisitiesCourse Unit CodeCourse Unit Title
619-2001Physical Chemistry
Name of Lecturer(s)Personal IDName
DOB36prof. Ing. Ľudovít Dobrovský, CSc., dr. h. c.
DOB30prof. Ing. Jana Dobrovská, CSc.
KOS37Ing. Gabriela Kostiuková, Ph.D.
SME06prof. Ing. Bedřich Smetana, Ph.D.
Summary
The topic of the subject is theoretical foundation in the area of application of the physical chemistry principles to particular technological processes.
Learning Outcomes of the Course Unit
The aim of the course is to deepen students' knowledge of chemical thermodynamics and kinetics of the thermodynamics of solutions and apply this knowledge to the technology of preparation of metallic materials. Graduates of the course will be able to characterize solutions - Raoult and Henry's law, ideal and non-ideal solutions, thermodynamic functions of solutions, activity of a component in solution, thermodynamic models of solutions. They will be able to apply chemical thermodynamics and kinetics to pyrometallurgical processes - thermal dissociation, reduction of metal oxides, Boudouard reaction. They will be able to monitor and analyze the processes and interactions between metal melts and the gaseous atmosphere, as well as monitor and analyze the processes between metal melts and oxide melts. They will be able to characterize the physical properties of melts - molten metals and oxide melts and apply the acquired theoretical knowledge to selected technological processes.
Course Contents
1. Solutions and their classification. Nonelectrolyte solutions, ideal and
real solutions. The Raoult’s law and Henry’s law. Real solutions,
definition of the standard states for component in binary solutions,
deviation from Raoult´s and Henry´s law, activity and activity
coefficient.
2. Thermodynamic properties of multicomponent solutions, activities and
interaction coefficients.
3. Thermodynamic functions of solutions. Partial molar quantities.
Differential and integral quantities. Mixing and excess quantities.
Thermodynamic models of solutions – ideal, real, regular and athermal
solution. The Gibbs-Duhem equation, applications.
4. The thermodynamics, kinetics and mechanism of fundamental technological
reactions. Equilibrium in a system containing condensed phases and gaseous
phases. The thermal dissociation of compounds. The thermal dissociation
temperature and pressure.
5. The indirect chemical reduction of metal oxide. The Boudouard reaction,
thermodynamic and kinetic analysis, significance, technological use of
Boudouard reaction. The direct reduction of metal oxide. Graphical
representation of equilibria in the system metal – oxygen – carbon.
6. The mechanism and kinetics of thermal decomposition and reduction.
Topochemical reaction, characteristics, models. The Jander´s equation. The
metal oxidation kinetics.
7. Molten metal theories. The structure and physical properties of liquid
metals – viscosity, surface tension, vaporization, sublimation, melting,
transformation of the crystalline form.
8. The crystallisation. Homogeneous and heterogeneous nucleation,
physicochemical analysis of process, critical radius of embryo and its
dependence on selected factors.
9. Physical and metallurgical aspects of gases in molten metal. The Sievert's
law – solubility dependence on selected factors. The influence of gas
pressure on the solubility of gas in liquid metals.
10. Molten slags, theory of slags. The molecular and ionic theory of slags.
The classification of ions in slags, basicity of slags. Physicochemical
properties of slags - structure, viscosity, surface tension,
electrochemical properties.
11. The Temkin´s model of ideal ionic melts, thermodynamic quantities of ideal
ionic solution. Non-ideal ionic solution, characteristics of selected
theories.
12. The thermodynamics, kinetics and mechanism of raffination processes. The
distribution of components between two immiscible liquids, Nernst’s
distribution law, distribution coefficient, distribution reactions between
slag and metal.
13. Rafination reactions – desulphurisation, dephosphorization, deoxidation of
slags, thermodynamic and kinetic description of rafination processes.
14. Nonmetallic phases in metal. The formation and growth of inclusions,
thermodynamic and kinetic factors.
Recommended or Required Reading
Required Reading:
MOORE, John Jeremy. Chemical metallurgy. 2nd ed. Oxford: Butterworth-Heinemann, 1990. ISBN 0-7506-1646-6.


DUDEK, Rostislav, Kristina PEŘINOVÁ a Jaromír KALOUSEK. Teorie technologických procesů. Ostrava: Vysoká škola báňská - Technická univerzita Ostrava, 2012. ISBN 978-80-248-2571-7.
Dostupné z: https://www.vsb.cz/e-vyuka/cs/subject/619-2010/01
DOBROVSKÁ, Jana a Kristina PEŘINOVÁ. Teoretické základy technologických procesů v příkladech, VŠB-TUO, 2018.
Dostupné z: https://www.vsb.cz/e-vyuka/cs/subject/619-2010/01
MYSLIVEC, Theodor. Fyzikálně chemické základy ocelářství. Praha: SNTL -Nakladatelství technické literatury, 1965.
MOORE, John Jeremy. Chemical metallurgy. 2nd ed. Oxford: Butterworth-Heinemann, 1990. ISBN 0-7506-1646-6.
Recommended Reading:
Gaskell D.R.: Introduction to Thermodynamics of Materials, 3rd. Ed., Taylor and Francis, New York-London 1995, ISBN 1-56032-432-5.
TURGDOGAN, E. T. Physicochemical Properties of Molten Slags and Glasses. London: The Metals Society, 1983, 516 s. ISBN 0 904357 54 6.
ATKINS, P. W. a J. DE PAULA. Atkins' Physical chemistry. 8th ed. Oxford:
Oxford University Press, 2006. ISBN 0-19-870072-5.
KOMOROVÁ, Ľudmila a Ivan IMRIŠ. Termodynamika v hutníctve. Bratislava: Alfa, 1989. ISBN 80-05-00604-7.
KELLÖ, Vojtech a Alexander TKÁČ. Fyzikálna chémia. 3. upr. vyd. Bratislava: Alfa, 1977.
KUFFA,Tarzicius. Teória pyro-, hydro- a elektrometalurgia. Košice: Vysoká škola technická, 1981.
JAGOŠ, Jaroslav. Teória hutníckych procesov I. Bratislava: Alfa, 1980.
JAGOŠ, Jaroslav. Teória hutníckych procesov II. Bratislava: Alfa, 1982.
Gaskell D.R.: Introduction to Thermodynamics of Materials, 3rd. Ed., Taylor and Francis, New York-London 1995, ISBN 1-56032-432-5.
Planned learning activities and teaching methods
Lectures, Individual consultations, Tutorials, Experimental work in labs
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit45 (45)20
                PísemkaWritten test28 0
                Laboratorní práceLaboratory work15 0
                Jiný typ úlohyOther task type2 0
        ExaminationExamination55 (55)15
                Písemná zkouškaWritten examination15 5
                Ústní zkouškaOral examination40 10