Skip to main content
Skip header

Heat Transfer and Fluid Mechanics

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code635-2032/01
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Third Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
VEL37doc. Ing. Marek Velička, Ph.D.
MAC589Ing. Mario Machů, Ph.D.
Summary
Heat transfer by convection, conduction and radiation. Fundamental laws in heat transfer, examples from heat transfer area.
Equations from fluid statics and fluid dynamics. Pressure losses in nets. Flow of gasses via different outlets.
Theory of similarity and numerical simulations concerning the heat transfer and fluid mechanics. Process how to use the commercial software in heat transfer and fluid mechanics problems – animations, videos of problems, discussion.
Learning Outcomes of the Course Unit
Student will be able:
- to determinate the fundamental problems from heat transfer field – conduction, convection and radiation in interaction with environment,
- to describe and use fundamental theorems and laws of fluid mechanics, and to solve the problems from fluid flows,
- to use the knowledge from area of numerical simulations with commercial software based on theoretical background of the course.
Course Contents
• Introduction of heat transfer and fluid mechanics.
• Conduction. Thermal and heat fields, temperature gradient. First Fourier Law – heat flow and heat. Second Fourier Law – steady and non-steady states. Joule-Lenz Law. Thermal conductivity coefficient, thermal diffusivity coefficient. Boundary conditions for conductive heat transfer problems.
• Convection. Forced and unforced convection. Heat transfer coefficient. Conductional-convectional heat transfer.
• Fundamentals of similarity of systems – model and reality. Laws of similarity, criteria-numbers, equations. Physical modelling vs. abstract modelling.
• Thermal radiation. Physical fundamentals of radiation and theory. Radiation properties. Emissivity. Black and grey surfaces (body). Radiation flux, areal radiation flux. Five laws – Planck, Wien, Stefan-Boltzmann, Lambert, Kirchfoff. Radiation between bodies – variants. View factor relations. Radiation of gases and mixture of gasses in interaction with surfaces.
• Fluid properties – variations of pressure, ideal gas equations, compression, expansion, dilatation, viscosity, surface tension, thermodynamics system gas – steam. Viscous and inviscid fluids.
• Hydromechanics. Basic statics and dynamics equations – Euler, Navier-Stokes, Bernoulli, continuity.
• Fluid statics. Static of one gas system. Statics of two gases thermodynamics system. Application in flame furnace device.
• Fluid dynamics. Reynolds number. Laminar and turbulent flow. Velocity flow rates. Specification.
• Pressure losses. Local losses, height loss, friction losses. Pressure losses developed by chimney. Fundamental laws and coefficients of losses.
• Gas discharge openings. Gas discharge at low speeds. Velocity, volume and mass flows determination.
• The commercial software utilization in conditions of heat transfer and fluid mechanics. FEM, FVM, CFD. Step-by-step creating the simulation. Advantages and disadvantages of simulations and what to do, to be the simulation correct and usable in real processes.
Recommended or Required Reading
Required Reading:
[1] CENGEL, Y.A.,‎ GHAJAR, A.J. Heat and Mass transfer:Fundamentals and Applications. Columbus: McGraw-Hill Education, 2014. ISBN 978-00-733-9818-1.
[2] BEJAN, A., KRAUS, A. D. Heat Transfer Handbook. John Wiley & Sons, 2003. ISBN 978-0-471-39015-2.
[3] STREETER, V. L., BEDFORD, K. W. A WYLIE, B. E. Fluid mechanics. 9th ed. Boston: McGraw-Hill, 1998. ISBN 0-07-062537-9 (Chapter 4).
[4] KRAUSE, E. Fluid Mechanics. Berlin: Springer Verlag, 2005. ISBN 3-540-22981-7.
[1] MACHÁČKOVÁ, A., KOCICH, R. Sdílení tepla a proudění. Ostrava: VŠB-TUO, 2012. ISBN 978-80-248-2576-2.
[2] PŘÍHODA, M., RÉDR, M. Sdílení tepla a proudění. Ostrava: VŠB-TUO, 2008. ISBN 978-80-248-1748-4.
[3] BAŠTA, J. et al. Topenářská příručka: 120 let topenářství v Čechách a na Moravě. Svazek 1. 1. vyd. Praha: GAS, 2001. ISBN 80-86176-82-7.
[4] LIENHARD IV, J. H., LIENHARD V, J. H. A Heat Transfer Textbook. 4th ed. Cambridge: Phlogiston Press, 2012.

Recommended Reading:
[1] CENGEL, Y.A.,‎ GHAJAR, A.J. Fluid mechanics:Fundamentals and Applications. Columbus: McGraw-Hill Education, 2017. ISBN 978-12-596-9653-4.
[2] TALER, J., DUDA, P. Solving Direct and Inverse Heat Conduction Problems. Berlin: Springer, 2006. ISBN 978-3-540-33470-5.
[3] MULLINGER, P., JENKINS, B. Industrial and Process Furnaces: Principles, Design and Operation. 1st ed. Oxford: Butterworth-Heinemann, 2008. ISBN 978-0-7506-8692-1.
[1] JUREČKA, P. Proudění a sdílení tepla : cvičení do předmětu "Sdílení tepla a proudění“. Ostrava: VŠB-TUO, 2006. ISBN 80-248-1083-2.
[2] BÁLEK, S. Tepelně technické tabulky a diagramy. Ostrava: VŠB-TUO, 2005. ISBN 80-248-0828-5.
[3] HAŠEK, P., KLEČKOVÁ, Z. Energetika v metalurgii:(cvičení). 2. vyd. Ostrava: VŠB-TU, 2002. ISBN 80-248-0016-0.
Planned learning activities and teaching methods
Lectures, Tutorials
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit30 20
        ExaminationExamination70 21