Skip to main content
Skip header

Testing of materials for thermal processes

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code635-2037/01
Number of ECTS Credits Allocated7 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Third Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
TOP36Ing. Michaela Topinková, Ph.D.
KLA09Ing. Miroslava Klárová, Ph.D.
Summary
The effect of material structure on their properties. Criteria of density. Particle size and specific surface of powder materials. Mechanical properties. Thermal properties. Thermomechanical properties. Corrosion of materials for thermal processes. Rheology of materials for thermal processes. Behaviour of raw materials and refractory materials at elevated and high temperatures.
Learning Outcomes of the Course Unit
Student will be able to:
- identify materials for thermal processes on the basis of their properties
- consider properties of materials for thermal processes from the perspective of their composition and structure
- predict lifetime of given materials in dependency of their properties
- evaluate possible application of materials in operating conditions
- determine properties of materials for thermal processes
Course Contents
• Criteria of density. Determination of density, bulk density, absorption, apparent and true porosity. Pore size distribution.
• Automatic determination of density. Mercury porosimetry. Determination of gas permeability.
• Granulometry. Sieve analyse, particle counters, separators. Rules for usage of particular methods for description of granulometry.
• Specific surface of powder materials. Principles of permeable and sorption methods of determination of specific surface.
• Mechanical properties of inorganic non-metal materials. Relationships between structure of materials and theoretical strength. Compressive, tensile and flexural strength. Impact bending strength.
• Young modulus. Static and dynamic methods of determination of elasticity modulus. Hardness and micro hardness. Abrasion resistance.
• Thermal properties. Thermal capacity. Effective coefficient of thermal conductivity. Determination of coefficient of thermal conductivity. Determination of thermal diffusivity.
• Thermal expansion. Determination of linear and volume thermal expansion.
• Thermo-mechanical properties. High temperature flexural strength. Refractoriness under load. Creep. Thermal shock resistance. Refractoriness. High temperature volume stability.
• Corrosion resistance of non-metal inorganic materials. Frost resistance.
• Reology of materials for thermal processes. Classification of materials related to their stress-strain behaviour. Viscosity of slurries. Deflocculation. Plasticity of mixes.
• Preparation of un-shaped materials. Determination of their properties.
• High temperature treatment of non-metal inorganic heterogeneous materials. Expression of water content and its reduction. Processes at water leaving the system. Principles and ways how to reduce water content in system. Sintering. Sintering processes and their principles.
Recommended or Required Reading
Required Reading:
[1] KOLLER, A. Structure and Properties of Ceramics. Amsterdam: Elsevier, 1994. ISBN 0-444-98719-3.
[2] IMANAKA, Y. et al. Advanced Ceramic Technologies & Products. Tokyo: Springer, 2012. ISBN 978-4-431-53913-1.
[3] CHINN, R., E. Ceramography: preparation and analysis of ceramic microstructures. ASM International, 2002. ISBN 978-0-87170-770-3.
[4] CALLISTER, D., W., RETHWISCH, D., G. Materials Science and Engineering. John Wiley & Sons. 2015. ISBN 978-1-118-31922-2.
[1] ŠESTÁK, J. Měření termofyzikálních vlastností pevných látek: Teoretická termická analýza. 1. vyd. Praha: Academia, 1982.
[2] ŠAŠEK, L. et al. Laboratorní metody v oboru silikátů. 1. vyd. Praha: SNTL, 1981.
[3] BEDNÁŘ, B., FLEMR, V., KRATOCHVÍL, B. Nové materiály: Stručná informace o vlastnostech a použití. 1. vyd. Praha: VŠCHT, 1991. ISBN 80-7080-098-4.
[4] ROUTSCHKA, G. Refractory materials: Basics – Structures –Properties. 2nd Ed. Essen: Vulkan Verlag, 2004. ISBN 3-8027-3154-9.
Recommended Reading:
[1] CARTER, C. B., NORTON, M. G. Ceramic Materials: Science and Engineering. 2nd ed. New York: Springer, 2013. ISBN 978-1-4614-3522-8.
[2] MacKENZIE, J., D., SMITH, M. E. Multinuclear Solid-State NMR of Inorganic Materials. Amsterdam: PERGAMON, 2002. ISBN 0-08-043787-7.
[3] SURENDRANATHEN, A., O. An Introduction to Ceramic and Refractories. New York: Taylor & Francis Group, 2015. ISBN 978-1-4822-2044-5.
[1] STAROŇ, J., TOMŠŮ, F. Žiaruvzdorné materiály: Výroba, vlastnosti a použitie. Revúca: SLOVMAG, 2000.
[2] KALOUS, V. et al. Metody chemického výzkumu. 1. vyd. Praha: SNTL, 1987.
[3] KRATOCHVÍL, B., ŠVORČÍK, V., VOJTĚCH, D. Úvod do studia materiálů. 1. vyd. Praha: VŠCHT, 2005. ISBN 80-7080-568-4.
Planned learning activities and teaching methods
Lectures, Tutorials, Experimental work in labs
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit25 13
        ExaminationExamination75 38