Skip to main content
Skip header

Testing of properties in materials for energy industry

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code636-3032/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
JON37doc. Ing. Petr Jonšta, Ph.D.
Summary
Learning Outcomes of the Course Unit
The student will be able to select the test methods for the specific materials used in the energy equipment, or their parts. The student will be able to describe the determination of basic and special material characteristics according to relevant valid standards. The student will learn to characterize materials used in power engineering from the point of view of their mechanical properties.
Course Contents
1. Test methods for evaluating the material properties and their distribution.
2. Determination of mechanical characteristics by tensile test – yield strength, Young´s modulus, tensile strength, elongation, contraction, strain hardening exponent. Overview of hardness test methods, principles.
3.-4. Fundamentals of fracture mechanics – methods of loading of the body with a crack. Linear elastic fracture mechanics (stress in a cracked body, driving force of crack, fracture toughness), elastic-plastic fracture mechanics (crack tip opening displacement, J-integral, stable crack growth under uniaxial loading).
5. Test methods for determining the fatigue characteristics of materials (S-N curve, Manson-Coffin curve). Evaluation of the resistance of the material to fatigue crack growth.
6.-7. Evaluation of the fracture behavior of metallic materials. Philosophy of transition temperature – Charpy impact test, Drop-weight test (DWT), Drop-weight tear test (DWTT), Impact bend test for large bodies (DT-dynamic tear). Philosophy based on fracture mechanics – the general temperature dependence of fracture toughness, plane-strain fracture toughness KIC, determination of fracture toughness in the transition region, determination of fracture toughness using multi-specimen testing, determination of the reference temperature T0.
8.-9. Procedures for determining the creep characteristics of metallic materials. Limit temperature Tg, creep curve. Basic characteristics of the creep resistance of materials. Practical examples of the evaluation of creep test results.
10.-11. Evaluation of resistance of structural steels to stress corrosion cracking and corrosion fatigue in aqueous environments. Mechanism of stable crack growth. Evaluation of resistance of steels to hydrogen embrittlement.
12. Evaluation of mechanical properties of structural steels using penetration tests. Principle of a ball penetration test (Bulge Punch Test). Procedure for performing time-independent penetration tests. Determination of the yield strength and tensile strength of steel from the results of penetration tests.
13. Determination of the transition behavior of steel and creep characteristics from the results of penetration tests.
14. Estimation of the fracture toughness from the results of penetration tests. The two-stage method to determine KIC. Direct estimation of the fracture toughness from the results of penetration tests. Innovative approach to the estimate of the fracture toughness JIC.

Recommended or Required Reading
Required Reading:
BOKŮVKA, O. et al. Fatigue of Materials at Low and High - Frequency Loading. 2. vyd. Žilina: University of Žilina, 2015. ISBN 978-80-554-1056-2.
ANDERSON, T.L. Fracture Mechanics, Fundamentals and Applications, CRC Press, NY 1995, 688 s.
Determination of Mechanical Properties of Materials by Small Punch and other Miniature Testing Techniques. 2nd International Conference SSTT: Conference Proceedings. Ostrava: Ocelot Ltd. 2012. ISBN 978-80-260-0079-2.
FIALA, J., V. MENTL a P. ŠUTTA. Struktura a vlastnosti materiálů. 1. vyd. Praha: Academia, 2003. ISBN 80-200-1223-0.
HOLZMANN, M. a M. KLESNIL: Křehký a únavový lom materiálů a konstrukcí. 1. vydání. Praha, SNTL, 1972. 208 s.
HERNAS A. a kol., Žárupevné oceli a slitiny. VŠB-TU Ostrava, 2009, 389 s.
MATOCHA, K. Hodnocení mechanických vlastností konstrukčních ocelí pomocí penetračních testů. 1. vyd. Ostrava: VŠB –TU Ostrava, 2010. ISBN 978-80-248-2223-5.
Determination of Mechanical Properties of Materials by Small Punch and other Miniature Testing Techniques. 2nd International Conference SSTT: Conference Proceedings. Ostrava: Ocelot Ltd. 2012. ISBN 978-80-260-0079-2.
Recommended Reading:
ASHBY, M.F., D.R.H. JONES. Engineering Materials 1, An Introduction to Properties, Applications, and Design. 4th edition. Elsevier Ltd. 2012. 472 p.
KLESNIL, M. and P. LUKÁŠ. Fatigue of metallic materials, 2nd ed. Elsevier Science, 1992. ISBN 9780444987235.
ČADEK, J. Creep in metallic materials, Academia Praha 1988, 376 p.
KLESNIL, M. a P. LUKÁŠ: Únava kovových materiálů při mechanickém namáhání, Academia Praha 1975, 222 s.
KUNZ, J. Aplikovaná lomová mechanika. Vyd. 1. Praha: Česká technika, 2005, ISBN 80-01-03306-6
KOUTSKÝ, J. Degradační procesy a predikce životnosti, ZČU Plzeň 1995, 166 s., ISBN 80-7082-177-9
Planned learning activities and teaching methods
Lectures, Seminars, Tutorials, Experimental work in labs
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit35 21
        ExaminationExamination65 30