Skip to main content
Skip header

3D Fluid Flow

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code338-0521/03
Number of ECTS Credits Allocated5 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
KOZ30prof. RNDr. Milada Kozubková, CSc.
BOJ01doc. Ing. Marian Bojko, Ph.D.
Summary
The course deals with the physical meaning of turbulence and mathematical models of turbulent flow in general three-dimensional geometry. The defined mathematical model is applied to three-dimensional geometries created in DesignModeler and SpaceClaim. Subsequently, a computer grid is generated in ANSYS Meshing. The mathematical model is supplemented by boundary and initial conditions. The theory is applied to examples of gas mixture flow, including consideration of heat source or chemical reaction with heat transfer and radiation. Numerical calculations of multiphase flow and flow around the bodies for stationary and non-stationary tasks will be realized. Also the problems of flow of solid particles in the form of discrete phase, etc. For the solution is applied software product Ansys Fluent, which uses the finite volume method.
Learning Outcomes of the Course Unit
In this course, students will learn about the physical importance of turbulence in the flow of real fluids in general three-dimensional geometry. Furthermore, they will learn in detail the creation of computational geometry in the software DesignModeler and SpaceClaim and the creation of a computational grid in the ANSYS Meshing program in the ANSYS software environment. They will also acquire knowledge and skills in designing and defining numerical simulations for solving problems of mixture flow including chemical reactions with heat transfer and radiation, multiphase flow and time-dependent tasks. In addition, they will encounter the problem of flow around of bodies and the flow of solid particles in the form of a discrete phase.
Course Contents
Curriculum
1. Software of DesignModeler. Basic menus and pull-down menu of DesignModeler. Presentation of results of CFD analysis of fuel combustion problems based on presented works published on the Internet.

2. Generating of the 3D geometry in DesignModeler. Tools to edit imported 3D geometry in DesignModeler. Introducing SpaceClaim to create geometry.

3. Software for creation of the computer grid in ANSYS Meshing, methods for generation of grid, 3D elements. Criteria of computer grid quality evaluation, boundary layer types, grid adaptation.

4. Numerical solution of first order differential equations, integral method, finite volume method, simple and simplec methods, interpolation scheme, convergence (residuals, uderrelax). Application of various elements on 3D geometry, evaluation of computer grid quality, creation of different types of boundary layers, export of computer grid to ANSYS Fluent.

5. Physical properties, mass transfer (Fick's law), conduction heat transfer (Fourier's law), mass and momentum transfer (convection), convection and conduction heat transfer.

6. Types of boundary conditions for compressible and incompressible flow. Definition of physical properties of gaseous mixture (constant, functional dependence on temperature, kinetic theory of gas) and mixtures, characteristics of terms: concentration, mass fraction, volume fraction.

7. Turbulence, compressible flow, N-S equation, continuity equation, Reynolds equation and rules, time averaging, Boussinesq hypothesis.

8. Energy equations for incompressible and compressible flow, heat transfer through the wall (thin wall), heat transfer through the wall of real thickness (SOLID), types of boundary conditions for walls, modeling near the wall, wall functions.

9. Transport equations for mass fractions, definition of diffusion flux and source term due to chemical reaction, definition of mixture and calculation of physical properties of mixture.

10. Flow of gases with chemical reaction and heat transfer and radiation, energy equation, models of combustion of gaseous phases, definition of kinetics of combustion process using Arhenius equation (pre-exponential factor, activation energy).

11. Flow with solid particles and drops, trajectory, definition of discrete phase, interaction with continuous phase, phase change, mathematical modeling of solid particles combustion.

12. Multiphase flow, characteristics of mathematical models VOF, Mixture, Euler, definition of individual phases, definition of cavitation by multiphase mathematical model, physical properties of phases.

13. Mathematical approaches to combustion of solid fuels, problems of defining a mathematical model of lump wood combustion in fireplace stoves, mathematical modeling of low-temperature coal oxidation.

14. Solving the problems of pulverized coal combustion in the fall tube, evaluation of mathematical approaches and comparison with the experiment.
Recommended or Required Reading
Required Reading:
SHAUGHNESSY, E. J., KATZ, I. M., SCHAFFER, J. P. INTRODUCTION TO FLUID MECHANICS. New York: Oxford University Press, Inc. 2005. p. 1018.

ANSYS Fluent Theory Guide (Release 18.2). 2017.

WILKES, J., O. Fluid mechanics for chemical engineers with Microfluidics and CFD. 2nd ed. Upper Saddle River: Prentice Hall Professional Technical Reference, c2006. Prentice Hall international series in the physical and chemical engineering sciences. ISBN 0-13-148212-2.
KOZUBKOVÁ, M., BOJKO, M., BLEJCHAŘ, T. Modelování přenosu tepla, hmoty a hybnosti. Ostrava: VŠB-TU, 2019, 224 s.
Dostupnost < http://www.338.vsb.cz/studium/skripta/>.

BOJKO, M. 3D proudění – ANSYS FLUENT učební text. Ostrava: VŠB-TU Ostrava, 2012. 314 s. ISBN 978-80-248-2607-3.
Dostupnost < http://www.338.vsb.cz/studium/skripta/>.

KOZUBKOVÁ, M., BOJKO, M., KRUTIL, J., BLEJCHAŘ, T. Modelování spalování paliv – učební text. Ostrava. VŠB-TU Ostrava, 2013, 288 s. ISBN 978-80-248-3144-2.

BOJKO, M. Návody do cvičení „Modelování proudění“ – Fluent. Ostrava. VŠB-TU Ostrava, 2008, 141 s. ISBN 978-80-248-1909-9.
Dostupnost < http://www.338.vsb.cz/studium/skripta/>.


Recommended Reading:
RODI, W., FUEYO, N. Engineering Turbulence Modelling and Experiments 5. First edition. Oxford: ELSEVIER SCIENCE Ltd. 2002. p. 1010. ISBN 0-08-044114-9.

ANSYS Fluent User’s Guide (Release 18.2). 2017.
BOJKO, M. Návody do cvičení „Modelování proudění“ – FLUENT. Ostrava: VŠB-TU Ostrava, 2008. 144 s. ISBN 978-80-248-1909-9.

BLEJCHAŘ, T. Turbulence Modelování proudění – CFX. Ostrava: VŠB-TU Ostrava, 2012. 263 s. ISBN 978-80-248-2606-6.

INCROPERA, F., P. ET AL. Fundamentals of heat and mass transfer. 6th ed.. Hoboken : Wiley, c2007 – xxv. 997 s. ISBN 0-471-45728-0.

ANSYS Fluent Tutorial Guide (Release 18.2). 2017.
Planned learning activities and teaching methods
Lectures, Tutorials
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Exercises evaluation and ExaminationCredit and Examination100 (100)51
        Exercises evaluationCredit35 25
        ExaminationExamination65 20