Course Unit Code | 361-0502/10 |
---|
Number of ECTS Credits Allocated | 4 ECTS credits |
---|
Type of Course Unit * | Compulsory |
---|
Level of Course Unit * | Second Cycle |
---|
Year of Study * | First Year |
---|
Semester when the Course Unit is delivered | Winter Semester |
---|
Mode of Delivery | Face-to-face |
---|
Language of Instruction | Czech |
---|
Prerequisites and Co-Requisites | There are no prerequisites or co-requisites for this course unit |
---|
Name of Lecturer(s) | Personal ID | Name |
---|
| OH130 | doc. Dr. Ing. Tadeáš Ochodek |
Summary |
---|
The course is a follow-up to Thermomechanics from bachelor study. It summarizes and extends knowledge of energy parameters of fuels and balance calculations of combustion and complements them with the basics of combustion reaction kinetics. Following is the issue of the generation of pollutants in combustion, including the minimization of CO2 production. Furthermore, the students will be acquainted with the principles of the construction of combustion plants for selected types of fuels (solid, liquid, gaseous), normative methodology for determining efficiency, including the possibility of increasing it. The conclusion is devoted to modern technologies - gasification, gas turbines, fuel cells. The course includes two extensive laboratory exercises. In addition to the basic textbooks, domestic and foreign professional publications are available. |
Learning Outcomes of the Course Unit |
---|
The course is a follow-up to Thermomechanics from bachelor study. It summarizes and extends knowledge of energy parameters of fuels and balance calculations of combustion and complements them with the basics of combustion reaction kinetics. Following is the issue of the generation of pollutants in combustion, including the minimization of CO2 production. Furthermore, the students will be acquainted with the principles of the construction of combustion plants for selected types of fuels (solid, liquid, gaseous), normative methodology for determining efficiency, including the possibility of increasing it. The conclusion is devoted to modern technologies - gasification, gas turbines, fuel cells. The course includes two extensive laboratory exercises. In addition to the basic textbooks, domestic and foreign professional publications are available. |
Course Contents |
---|
1. Fuel Characteristics - Solid Fossil Fuels. Fuel characteristics - liquid and gaseous fuels.
2. Fuel characteristics - solid and liquid biofuels.
3. Kinetics of combustion reactions - reaction rate, chemical equilibrium.
4. Kinetics of combustion reactions - dissociation of combustion products chemical reaction rate, actual course of combustion reactions.
5. Diffusion in the burning process - reaction rate, mass transfer.
6. Diffusion in the burning process - kinetic and diffusion mode, diffusion coefficient.
7. Parameters of combustion process.
8. Combustion efficiency, efficiency of combustion equipment in applications.
9. Generation of pollutants in combustion-mechanism of NOx formation.
10. Generation of pollutants in combustion - minimization of production and possibilities of NOx removal, primary and secondary methods.
11. Generation of pollutants in combustion - formation of SO2, CO and other pollutants, possibilities of emission minimization.
12. Modern energy sources (MEZ) -characteristics, properties, economy, MEZ on liquid and gaseous fuels.
13. Modern energy sources (MEZ) -characteristics, properties, economy, solid fuel MEZ.
14. Progressive technologies for combined heat and power generation, emission-free steam cycles. |
Recommended or Required Reading |
---|
Required Reading: |
---|
OCHODEK, T. Combustion Equipments. ERC, 2017.
SMOOT, L.D., SMITH, P.J. Coal Combustion and Gasification. Plenum Press, 1985. ISBN 0-306-41750-2.
VAN LOO, S., KOPPEJAN, J. Biomass Combustion and Co-firing. Earthscan, 2008. ISBN 978-1-84407-249-1.
ZINK, J. Combustion Handbook. CRC Press, 2001. ISBN 0-8493-2337-1.
SONNTAG, R.E., WYLEN, G.J. Introduction to Thermodynamics. 1991, ISBN 0-471-61427-0. |
OCHODEK, T. Spalovací zařízení. VŠB-TU Ostrava, VEC, 2017.
NOSKIEVIČ, P. Spalování uhlí. VŠB-TU Ostrava, 2002. ISBN 80-248-0204-X.
JIROUŠ, J. Efektivní spalování paliv. Tirgis Zkín, 2013. ISBN- 978-80-260-5393-4.
IBLER, Z. a kol. Technický průvodce energetika I. vydavatel BEN Technická literatura, 2002. ISBN 80-7300-026-1.
IBLER, Z. a kol. Technický průvodce energetika II (Energetika v příkladech). vydavatel BEN Technická literatura 2003. ISBN 80-7300-097-0.
ZINK, J. Combustion Handbook. CRC Press, 2001. ISBN 0-8493-2337-1 |
Recommended Reading: |
---|
Journal: VGB PowerTech ISSN 1435-3199, Cogeneration On-Site Power. ISSN 1469-0349.
KHAVKIN, Y. Combustion System Design. Penwell Publishing, 1996. ISBN 0-87814-462-5. |
Časopis: Energetika. ISSN 0375-8842.
Časopis: 3T. ISSN 1210-6003.
Časopis: Energie 21. ISSN 1803-0394.
ROUBÍČEK, V., BUCHTELE J. Uhlí – zdroje, procesy, použití. Montanex, 2002. ISBN 80-7225-063-9.
NOSKIEVIČ, P. PILCH, R. Spalování dřeva v malém ohništi. Finidr, 2008. ISBN-978-80-248-1889-4.
OCHODEK, T., NAJSER, J. Zplyňování biomasy I. VEC, 2014. ISBN- 978-80-248-3302-6.
ŠOBR, J., NOVÁK, J., ŘEHÁK, K. Přepočtové koeficienty mezi měrovými jednotkami fyzikálně-chemických veličin. Naše vojsko, 1995. |
Planned learning activities and teaching methods |
---|
Lectures, Seminars, Individual consultations, Tutorials, Experimental work in labs, Project work |
Assesment methods and criteria |
---|
Task Title | Task Type | Maximum Number of Points (Act. for Subtasks) | Minimum Number of Points for Task Passing |
---|
Credit and Examination | Credit and Examination | 100 (100) | 51 |
Credit | Credit | 30 | 15 |
Examination | Examination | 70 | 35 |