Skip to main content
Skip header

Materials for use in the petroleum industry

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code636-3038/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Choice-compulsory type B
Level of Course Unit *First Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
BET37doc. Ing. Petra Váňová, Ph.D.
Summary
Thermodynamic principles of solid substances; one-component systems ; binary systems – eutectic, eutectoid, peritectic, peritectoid reaction; systems with intermediate phases; iron – carbon system. Principles of materials degradation mechanisms. Materials for use in oil and gas industries and related branches.
Learning Outcomes of the Course Unit
Student is able to:
- Explain the principal concepts of thermodynamics and their importance in materials study;
- Outline basic processes – solidification and solid phase transformations – in one-component systems;
- Differentiate the behaviour of two-component systems and describe eutectic, eutectoid, peritectic and peritectoid reactions;
- Analyse more complicated binary systems and binary systems with intermediate phases;
- Outline the behaviour of both metastable and stable iron – carbon system and deduce properties of typical alloys.
Course Contents
1. Fundamentals of thermodynamics of solids; systems, components, phases; states of thermodynamic systems; Gibbs phase law.
2. Internal structure of solids, crystal structure failures.
3. One-component systems; solid state solidification, critical nucleation size (stable, unstable nucleation), homogeneous vs. solid state heterogeneous nucleation; solid state phase transformations.
4. Two-component systems and their equilibrium diagrams, basic types - system with unlimited solid solubility, system with eutectic, peritectic reaction; system with eutectoid reaction.
5. More complex two-component systems with solid state phase transformations and intermediate phases.
6. Iron-carbon system (Fe-C); metastable, stable diagram; basic types of reactions; phase description of the metastable diagram.
7. Basic structures in metastable Fe-C system; calculations of phase and structure composition in metastable Fe-C system.
8. Stable Fe-C system, differences from metastable system; graphitic cast iron, classification, basic characteristics.
9. Phase transformations of austenite during cooling - diffusion and partially diffusion transformations, basic characteristics of ferrite, pearlite, bainite.
10. Phase transformations of austenite during cooling - diffusionless transformations; basic characteristics of martensite.
11. Basic types of failure of technical materials - ductile, brittle failure. Methods of assessing the resistance of materials to brittle failure. Defects in materials - crack growth mechanisms, critical crack size; Griffith criterion, Griffith-Orowan criterion. Fracture toughness.
12. Basic mechanisms of degradation of materials in the oil industry - hydrogen embrittlement, sulphide stress cracking.
13. Mechanisms of hydrogen embrittlement, hydrogen traps, diffusion of hydrogen in materials, influence of basic factors on hydrogen embrittlement.
14. Methods of testing the resistance of materials to hydrogen embrittlement.

Recommended or Required Reading
Required Reading:
[1] CALLISTER, W. D. Materials science and engineering: an introduction. 7. ed. New York: Wiley, 2007. ISBN 978-0-471-73696-7.
[2] GANGLOFF, R. P., SOMERDAY, B. P. Gaseous hydrogen embrittlement of materials in energy technologies. Volume 1: The problem, its characterisation and effects on particular alloy classes. Oxford: Woodhead Publishing, 2012. ISBN 978-1-84569-677-1.
[3] GANGLOFF, R. P., SOMERDAY, B. P. Gaseous hydrogen embrittlement of materials in energy technologies. Volume 2: Mechanisms, modelling and future developments. Oxford: Woodhead Publishing, 2012. ISBN 978-0-85709-536-7.
[4] IANNUZZI, M. et al. Materials and corrosion trends in offshore and subsea oil and gas production. Materials degradation, 1, 2017, 1-11. ISSN 2397-2106.
[1] SOJKA, J. Nauka o materiálech. Ostrava: VŠB-TU Ostrava, 2008. Dostupné z:
http://katedry.fmmi.vsb.cz/Opory_FMMI/636/636-Sojka-Nauka-o-materialu-I.pdf
[2] PTÁČEK, L. Nauka o materiálu I. Brno: Akademické nakladatelství CERM, 2001. ISBN 80-7204-193-2.
[3] SOJKA, J. Odolnost ocelí vůči vodíkové křehkosti. Ostrava: VŠB-TU Ostrava, 2008. ISBN 978-80-248-1648-7.
[4] CALLISTER, W. D. Materials science and engineering: an introduction. 7. vyd. New York: Wiley, 2007. ISBN 978-0-471-73696-7.
Recommended Reading:
[1] OHRING, M. Engineering materials science. San Diego: Academic Press, 1995. ISBN 0-12-524995-0.
[2] LYNCH, S. P. Hydrogen embrittlement (HE) phenomena and mechanisms, in Stress corrosion cracking: Theory and practice, Oxford: Woodhead Publishing, 2011. ISBN 978-1-84569-673-3.
[3] IANNUZZI, M. Environmentally assisted cracking (EAC) in oil and gas production. in Stress corrosion cracking: Theory and practice, Oxford: Woodhead Publishing, 2011. ISBN 978-1-84569-673-3.
[4] NACE MR0175/ISO 15156-1 Petroleum and natural gas industries— Materials for use in H2S-containing
Environments in oil and gas production— Part 1: General principles for selection of cracking-resistant materials. NACE International/ISO 2001.
[1] HYSPECKÁ, L., MAZANEC, K. Vodíková křehkost konstrukčních ocelí o vyšších parametrech. Praha: Academia, 1978. Studie ČSAV.
[2] ČSN EN ISO 15156-1 Naftový a plynárenský průmysl - Materiály pro využití v prostředí obsahujícím H2S z těžby ropy a zemního plynu - Část 1: Obecné zásady pro výběr materiálů odolných proti tvorbě trhlin. 2016.
[3] VÁŇOVÁ, P. Vodíková křehkost a difúzní charakteristiky vodíku v ocelích TRIP. Ostrava: VŠB-TUO, habilitační práce, 2019.
[4] LYNCH, S. P. Hydrogen embrittlement (HE) phenomena and mechanisms, in Stress corrosion cracking: Theory and practice, Oxford: Woodhead Publishing, 2011. ISBN 978-1-84569-673-3.
Planned learning activities and teaching methods
Lectures, Tutorials, Experimental work in labs
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit35 21
        ExaminationExamination65 30