5TH WORKSHOP FOR FORMING AND PUNCHING

1ST GERMAN-CZECH BUSINESS MEETING

11 April 2024 | MSIC - VIVA | Ostrava | CZ

Dieter Weise, Fraunhofer IWU

3DCool-Tools / WORKPIECES

Highly wear-resistant additive-manufactured tools and components thanks to innovative diffusion and polishing treatments and residual stress reduction

Optimization of tool materials regarding stresses and wear

radiatanaa

Treatment	Parameters	Targets
Deep temperature treatment	 - 70 bis -120°C - 1 h per 1 cm material thickness 	 Transformation of retained austenite Better dimensional stability Higher hardness
KryoTreatment, Deep Cryogenic Treatment (DCT)	 -135 bis -196°C - 24 h or longer, reducing of treatment-time through cycling - possible 	 Formation of fine carbid germs increasing of carbides volume Higher wear resistance

Basic Effects of cryogenic treatment

State of the art

3D printing in industrial technology using

- Fabrication of implants with variable geometries (individualization) and precise adaptation possible
- Topological optimization (for example fabrication with original bone structure, material optimized tool structures or thermal regimes))

Possible applications in Czech and Germany

Different Materials in Czech and Germany

Spritzguss-Formeinsatz mit konturnaher Kühlung (www.fkm.net)

Geometrisch komplexes und filigrane Schneidmesser (www.fkm.net)

Production of total knee endoprostheses(Company USA 2021: Monogram Orthopedics)

Fräswerkzeuge, Formkerne, Stempel oder Matrizen die mittels 3D-Druck (Quelle: Kolibri Metals GmbH)

Hydrogen Economical production of bipolar plates of the highest quality

Embossing

Hydroforming

Roll to Roll Technology

Hydrogen

Economical production of bipolar plates of the highest quality

- Development of optimal process sequences by developing formable coating systems for the substrate foils
 Increasing tool life and surface quality through plasma electrolytic polishing
- Development of efficient tool manufacturing technologies
- Actual status recording (sensor-based monitoring) and development of a control loop with regard to data recording of component quality, tool geometry and press condition (press table deflection)
- Development of suitable lubricants for the highest stress regimes

HIGH-TEMPERATURE FORMING

FORMING AT TEMPERATURES OF UP TO 1,250°C POSSIBLE UNDER INERT GAS (HYDROFORMING ALSO POSSIBLE)

Press mechanics :

- <u>300 kN electro-mechanical pressing force and 100 kN</u> <u>tensile force</u> <u>interchangeable with hydraulic drive up to 500 kN</u>
- Hydraulic cushion up to 300 kN (force/travel controlled)
- Integrated tool holder for 300mm x 300mm size
- Process movements and forces are initiated by water-cooled coupling elements consisting of plunger and die cushion

Oven system:

- Furnace system for hot forming in a protective gas atmosphere with complete separation from the environment at a maximum temperature of up to 1,250°C
- <u>Vacuum in the furnace chamber down to -900 mbar and overpressure up to +60 mbar possible (inert gas</u> <u>nitrogen or argon)</u>
- Mobile design also enables off-site use

Platform technology for the development of bio-based high-performance lubricants using multiple sustainable material cycles

Initial situation

Bio lubricants

Market situation

- Strong growth forecast for biolubricants
- The largest current area of application are:
 - Loss lubrication with release into the environment at low to medium loads
 - Hydraulic oils for construction and agricultural machinery
 - Saw chain and formwork oils
- Increasing demand for biolubricants for:
 - High-load applications
 - Forming technology
 - Highly loaded gears (e.g. wind turbines)
- Lubricant remains on the component
 - Accumulation in cleaning media, costly disposal