Přeskočit na hlavní obsah
Přeskočit hlavičku
Ukončeno v akademickém roce 2017/2018

Matematika A

Typ studia bakalářské
Jazyk výuky čeština
Kód 151-0400/05
Zkratka MatKomb
Název předmětu česky Matematika A
Název předmětu anglicky Mathematics A
Kreditů 5
Garantující katedra Katedra matematických metod v ekonomice
Garant předmětu RNDr. Pavel Rucki, Ph.D.

Osnova předmětu

1. Základy matematické logiky a teorie množin – výrok, operace s výroky, výrokové formy, kvantifikátory, matematická věta jako implikace a ekvivalence. Operace s množinami, číselné množiny, intervaly.
~~~~~
2. Posloupnosti – základní pojmy, vlastnosti, aritmetická a geometrická posloupnost a jejich užití.
~~~~~
3. Posloupnosti – limita posloupnosti, věty o limitách posloupností, nevlastní limita posloupnosti, definice Eulerova čísla e.
~~~~~
4. Funkce jedné proměnné – základní pojmy (definiční obor, obor hodnot, graf funkce), vlastnosti funkcí, operace s funkcemi, složená funkce.
~~~~~
5. Funkce jedné proměnné – inverzní funkce, elementární funkce, grafy funkcí a jejich transformace, průsečíky křivek.
~~~~~
6. Funkce jedné proměnné – limita funkce, vlastní limita, limita ve vlastním bodě, jednostranné limity. Spojitost funkce.
~~~~~
7. Funkce jedné proměnné – nevlastní limita, limita funkce v nevlastním bodě. Vlastnosti spojitých funkcí.
~~~~~
8. Funkce jedné proměnné – derivace funkce, geometrický význam derivace, pravidla pro derivování, diferenciál funkce, rovnice tečny a normály ke křivce, derivace vyšších řádů.
~~~~~
9. Funkce jedné proměnné – základní věty diferenciálního počtu, l´Hospitalovo pravidlo, Taylorův a Maclaurinův polynom.
~~~~~
10. Funkce jedné proměnné – věty o průběhu funkce, monotónnost a lokální a glogální extrémy funkce.
~~~~~
11. Funkce jedné proměnné – konkávnost, konvexnost funkce a inflexní body, asymptoty se směrnicí a bez směrnice.
~~~~~
12. Lineární algebra – matice, operace s maticemi, hodnost matice.
~~~~~
13. Lineární algebra – determinanty, vlastnosti determinantu, Sarrusovo pravidlo, Laplacův rozvoj determinantu, inverzní matice, maticové rovnice.
~~~~~
14. Lineární algebra – Eukleidovský prostor, vektory, lineární kombinace vektorů, lineární závislost a nezávislost vektorů, skalární součin, kolmost vektorů, délka vektoru.


Témata výkladu zpracovaných v podobě multimediálních studijních opor:

1. Funkce jedné reálné proměnné – definice, definiční obor, obor hodnot, graf funkce, vlastnosti funkcí: funkce monotónní, omezená, sudá, lichá, periodická, prostá, složená, elementární funkce, inverzní funkce, cyklometrické funkce.

2. Limita funkce a posloupnosti – pravidla pro výpočet limit, limita funkce v nevlastním bodě, nevlastní limita, jednostranné limity, spojitost funkce, posloupnosti, limita posloupnosti.

3. Derivace funkce – geometrický a obecný význam derivace, pravidla derivování, derivace vyšších řádů, diferenciál, rovnice tečny a normály, L’Hospitalovo pravidlo.

4. Průběh funkce – extrémy funkce, intervaly monotónnosti, inflexní body, konvexnost, konkávnost, asymptoty grafu funkce, globální extrémy.

5. Lineární algebra – Euklidovský prostor, vektory, lineární závislost a nezávislost vektorů, lineární kombinace vektorů, matice, operace s maticemi, hodnost matice, determinanty, inverzní matice, maticové rovnice.

Offline procvičování (samostatně, bez stálého online připojení k internetu, pod vedením tutora prostřednictvím Průvodce studiem a se soustavným využíváním studijních opor).

Offline procvičování obsahově navazuje na témata výkladu. Organizačně je zařazeno do vzdělávání tak, aby byl zajištěn co nejefektivnější dopad na studující, tzn. procvičování prostupuje výkladem dle metodických a didaktických zásad.

Povinná literatura

E-learningový kurz přístupný přes webové rozhraní v řídícím vzdělávacím systému Moodle (http://lms.vsb.cz), jenž obsahuje zejména:
– průvodce studiem (metodický návod pro studium) k předmětu Matematika A (v tištěné i elektronické podobě),
– jednotlivé vzdělávací objekty multimediálního charakteru, studijní opory,
– komunikační nástroje (diskuse, rozhovory, fóra v řídícím vzdělávacím systému).

[1] GENČEV, M., HRUBÁ, J., PULCEROVÁ, S., RUCKI, P. Matematika A. SOT, vol. 5, Ostrava: VŠB-TU Ostrava, 2013. ISBN 978-80-248-3154-1.
[2] GENČEV, M., RUCKI, P. Cvičebnice z matematiky nejen pro ekonomy I. SOT, vol. 32, Ostrava: VŠB-TU Ostrava, 2017, ISBN 978-80-248-4100-7.

Doporučená literatura

[1] POLOUČKOVÁ, A., ŠALOUNOVÁ, D. Diferenciální počet I. VŠB–TU Ostrava, 2003, ISBN 80-7078-904-2.
[2] COUFAL, J., KLŮFA, J. Matematika pro ekonomické fakulty 1. 1. Vydání Ekopress, Praha 2000. ISBN 80-86119-30-0.
[3] KAŇKA, M., HENZLER, J. Matematika pro ekonomické fakulty 2. 1. Vydání Ekopress, Praha 2000. ISBN 80-86119-31-9.