Přednášky:
Úvod do maticového počtu
Řešení soustav lineárních rovnic
Inverzní matice
Trojúhelníkový rozklad
Vektorový prostor a podprostor
Báze a dimenze vektorových prostorů
Lineární zobrazení
Derivace a určitý integrál po částech lineárních funkcí
Bilineární a kvadratické formy
Skalární součin a ortogonalita
Determinanty
Vlastní čísla a vlastní vektory
Využití lineární algebry pro řešení inženýrských úloh na superpočítači Anselm
Cvičení:
Počítání s komplexními čísly
Procvičení operací s vektory a maticemi
Příklady řešení soustav lineárních rovnic eliminací
Výpočet inverzní matice
Trojúhelníkový rozklad a řešení soustav
Důsledky axiomů a příklady vektorových prostorů
Nalezení souřadnic vektoru v dané bázi
Příklady prostorů funkcí
Příklady lineárních zobrazení, určení matice lineárního zobrazení
Matice bilineární a kvadratické formy
Klasifikace kvadratických forem
Ortogonalizace vektorů Gram-Schmidtovým procesem
Výpočet determinantů
Výpočet vlastních čísel a vlastních vektorů
Projekty:
Samostudium základní teorie komplexních čísel a ortonormalizačního procesu a správné vyřešení 2. příkladů týkající se této problematiky.
Úvod do maticového počtu
Řešení soustav lineárních rovnic
Inverzní matice
Trojúhelníkový rozklad
Vektorový prostor a podprostor
Báze a dimenze vektorových prostorů
Lineární zobrazení
Derivace a určitý integrál po částech lineárních funkcí
Bilineární a kvadratické formy
Skalární součin a ortogonalita
Determinanty
Vlastní čísla a vlastní vektory
Využití lineární algebry pro řešení inženýrských úloh na superpočítači Anselm
Cvičení:
Počítání s komplexními čísly
Procvičení operací s vektory a maticemi
Příklady řešení soustav lineárních rovnic eliminací
Výpočet inverzní matice
Trojúhelníkový rozklad a řešení soustav
Důsledky axiomů a příklady vektorových prostorů
Nalezení souřadnic vektoru v dané bázi
Příklady prostorů funkcí
Příklady lineárních zobrazení, určení matice lineárního zobrazení
Matice bilineární a kvadratické formy
Klasifikace kvadratických forem
Ortogonalizace vektorů Gram-Schmidtovým procesem
Výpočet determinantů
Výpočet vlastních čísel a vlastních vektorů
Projekty:
Samostudium základní teorie komplexních čísel a ortonormalizačního procesu a správné vyřešení 2. příkladů týkající se této problematiky.