- Kongruence, modulární aritmetika, binární a q-ární systémy, symetrie a jejich popis
- onečné algebraické struktury s jednou operací, vlastnosti a využití, dihedrální a cyklické grupy.
- Součiny, isomorfismy, konstrukce grup, klasifikace.
- Struktury se dvěma operacemi, okruhy polynomů, operace, vlastnosti.
- Tělesa prvočíselného řádu, faktorové okruhy, příklady využití.
- Faktorizace polynomů, ireducibilní polynom.
- Konstrukce Galoisových těles, vlastnosti.
- Konečné vektorové prostory, jejich konstrukce, příklady a vlastnosti.
- Hlavní úloha teorie kódování, příklady kódů, aplikace.
- Kódy jako vektorové prostory. Hammingova vzdálenost. Ekvivalence kódů.
- Jednoduché lineární a cyklické kódy, význam a příklady.
- Kódování a dekódování lineárním kódem, pravděpodobnost detekce a korekce chyby.
- Další jednoduché kódy, kódy a Latinské čtverce.
- onečné algebraické struktury s jednou operací, vlastnosti a využití, dihedrální a cyklické grupy.
- Součiny, isomorfismy, konstrukce grup, klasifikace.
- Struktury se dvěma operacemi, okruhy polynomů, operace, vlastnosti.
- Tělesa prvočíselného řádu, faktorové okruhy, příklady využití.
- Faktorizace polynomů, ireducibilní polynom.
- Konstrukce Galoisových těles, vlastnosti.
- Konečné vektorové prostory, jejich konstrukce, příklady a vlastnosti.
- Hlavní úloha teorie kódování, příklady kódů, aplikace.
- Kódy jako vektorové prostory. Hammingova vzdálenost. Ekvivalence kódů.
- Jednoduché lineární a cyklické kódy, význam a příklady.
- Kódování a dekódování lineárním kódem, pravděpodobnost detekce a korekce chyby.
- Další jednoduché kódy, kódy a Latinské čtverce.