Přednášky:
Matematické modelování. Účel a obecné principy modelování. Výhody matematického modelování. Správné použití matematických modelů.
Diferenciální formulace matematických modelů. Jednorozměrná úloha vedení tepla a její matematická formulace. Zobecňování modelu. Vstupní data, linearita, existence a jednoznačnost řešení. Nespojitá vstupní data. Jednorozměrná úloha pružnosti a další modely. Vícerozměrné modely.
Variační formulace okrajových úloh. Slabá formulace okrajových úloh a její vztah ke klasickému řešení. Energetický funkcionál a energetická formulace. Koercivita a ohraničenost. Jednoznačnost, spojitá závislost řešení na vstupních datech. Existence a hladkost řešení.
Ritzova - Galerkinova (RG) metoda. RG metoda. Metoda konenčných prvků (MKP) jako speciální případ RG metody. Historie MKP.
Algoritmizace metody konečných prvků. Sestavení matice tuhosti a vektoru zatížení. Zohlednění okrajových podmínek. Numerické řešení soustavy lineárních algebraických rovnic. Různé typy konečných prvků.
Přesnost řešení metodou konečných prvků. Apriorní odhad diskretizační chyby. Konvergence, h- a p-verze MKP. Aposteriorní odhady. Návrh sítě pro MKP, adaptivní techniky a optimální sítě.
Software pro MKP a jeho užití pro MM. Preprocesing a postprocesing. Komerční programové systémy. Řešení zvláště náročných a speciálních úloh. Zásady pro matematické modelování užitím MKP.
Matematické modelování. Účel a obecné principy modelování. Výhody matematického modelování. Správné použití matematických modelů.
Diferenciální formulace matematických modelů. Jednorozměrná úloha vedení tepla a její matematická formulace. Zobecňování modelu. Vstupní data, linearita, existence a jednoznačnost řešení. Nespojitá vstupní data. Jednorozměrná úloha pružnosti a další modely. Vícerozměrné modely.
Variační formulace okrajových úloh. Slabá formulace okrajových úloh a její vztah ke klasickému řešení. Energetický funkcionál a energetická formulace. Koercivita a ohraničenost. Jednoznačnost, spojitá závislost řešení na vstupních datech. Existence a hladkost řešení.
Ritzova - Galerkinova (RG) metoda. RG metoda. Metoda konenčných prvků (MKP) jako speciální případ RG metody. Historie MKP.
Algoritmizace metody konečných prvků. Sestavení matice tuhosti a vektoru zatížení. Zohlednění okrajových podmínek. Numerické řešení soustavy lineárních algebraických rovnic. Různé typy konečných prvků.
Přesnost řešení metodou konečných prvků. Apriorní odhad diskretizační chyby. Konvergence, h- a p-verze MKP. Aposteriorní odhady. Návrh sítě pro MKP, adaptivní techniky a optimální sítě.
Software pro MKP a jeho užití pro MM. Preprocesing a postprocesing. Komerční programové systémy. Řešení zvláště náročných a speciálních úloh. Zásady pro matematické modelování užitím MKP.