1. STATISTICKÝ POPIS - MATEMATICKÝ APARÁT
- náhodné proměnné; funkce rozdělení a hustota rozdělení
pravděpodobnosti,
- statistické střední hodnoty, charakteristická funkce,
- základní typy rozdělení,
- náhodné procesy; stacionární náhodné procesy, ergodické náhodné
procesy,
- spektrální vlastnosti stacionárních náhodných procesů; spektrální
hustota, Wienerova-Chinčinova věta,
- ortogonální reprezentace náhodných procesů; Karhunenův-Loéveův rozvoj.
2. ČÁSTEČNÁ KOHERENCE SKALÁRNÍCH OPTICKÝCH POLÍ
- časová a prostorová koherence,
- interferenční zákony pro dva částečně koherentní svazky; funkce vzájemné
koherence; korelace druhého řádu v prostorově-frekvenční oblasti,
vzájemná spektrální hustota a spektrální stupeň koherence,
- zákony šíření částečné koherence; korelační funkce rozlehlých zdrojů;
Van Cittertův-Zernikův teorém,
- zvláštní typy polí; vzájemná spektrální čistota, úplně koherentní pole
v prostorově-časové a prostorově-frekvenční oblasti,
- reprezentace zdrojů a polí v prostorově-frekvenční oblasti pomocí
koherentních vidů a souborů.
3. ZÁŘENÍ ČÁSTEČNĚ KOHERENTNÍCH ZDROJŮ
- záření primárních zdrojů,
- záření planárních sekundárních zdrojů; kvazihomogenní zdroje, další
stochastické zdroje,
- koherenčně-indukované spektrální změny; nekosmologický spektrální posuv -
Wolfův jev.
4. ČÁSTEČNÁ KOHERENCE VEKTOROVÝCH OPTICKÝCH POLÍ
- koherenční matice,
- nepolarizované a polarizované světlo; stupeň polarizace,
- maticový popis průchodu světla lineárním optickými prvky netvořícími
obraz,
- interferenční zákon pro dva částečně polarizované svazky.
5. APLIKACE TEORIE ČÁSTEČNÉ KOHERENCE
- Fourierova spektroskopie: měření spekter; interferometrie v časové
oblasti: měření vzdáleností, profilometrie; interferometrie v bílém
světle: měření disperze v klasické, popř. vláknové optice,
- spektrální interferometrie: profilometrie; spektrální interferometrie
v bílém světle: měření vzdáleností a disperze v klasické, popř. vláknové
optice,
- spektrální reflektometrie: měření parametrů tenkých vrstev.
- náhodné proměnné; funkce rozdělení a hustota rozdělení
pravděpodobnosti,
- statistické střední hodnoty, charakteristická funkce,
- základní typy rozdělení,
- náhodné procesy; stacionární náhodné procesy, ergodické náhodné
procesy,
- spektrální vlastnosti stacionárních náhodných procesů; spektrální
hustota, Wienerova-Chinčinova věta,
- ortogonální reprezentace náhodných procesů; Karhunenův-Loéveův rozvoj.
2. ČÁSTEČNÁ KOHERENCE SKALÁRNÍCH OPTICKÝCH POLÍ
- časová a prostorová koherence,
- interferenční zákony pro dva částečně koherentní svazky; funkce vzájemné
koherence; korelace druhého řádu v prostorově-frekvenční oblasti,
vzájemná spektrální hustota a spektrální stupeň koherence,
- zákony šíření částečné koherence; korelační funkce rozlehlých zdrojů;
Van Cittertův-Zernikův teorém,
- zvláštní typy polí; vzájemná spektrální čistota, úplně koherentní pole
v prostorově-časové a prostorově-frekvenční oblasti,
- reprezentace zdrojů a polí v prostorově-frekvenční oblasti pomocí
koherentních vidů a souborů.
3. ZÁŘENÍ ČÁSTEČNĚ KOHERENTNÍCH ZDROJŮ
- záření primárních zdrojů,
- záření planárních sekundárních zdrojů; kvazihomogenní zdroje, další
stochastické zdroje,
- koherenčně-indukované spektrální změny; nekosmologický spektrální posuv -
Wolfův jev.
4. ČÁSTEČNÁ KOHERENCE VEKTOROVÝCH OPTICKÝCH POLÍ
- koherenční matice,
- nepolarizované a polarizované světlo; stupeň polarizace,
- maticový popis průchodu světla lineárním optickými prvky netvořícími
obraz,
- interferenční zákon pro dva částečně polarizované svazky.
5. APLIKACE TEORIE ČÁSTEČNÉ KOHERENCE
- Fourierova spektroskopie: měření spekter; interferometrie v časové
oblasti: měření vzdáleností, profilometrie; interferometrie v bílém
světle: měření disperze v klasické, popř. vláknové optice,
- spektrální interferometrie: profilometrie; spektrální interferometrie
v bílém světle: měření vzdáleností a disperze v klasické, popř. vláknové
optice,
- spektrální reflektometrie: měření parametrů tenkých vrstev.