Přednáška
I. Modelování procesů
1. Systém, vlastnosti systému, proces, operace, model, modelování.
2. Numerické modelování procesů – podstata, proudění a jeho základní
charakteristiky, metody matematického modelování proudění, statistické modely
turbulence, okrajové podmínky, základy k programu FLUENT.
3. Fyzikální modelování - podobnost, kriteria podobnosti, tvorba kriterii
podobnosti, dimenzionální analýza, analýza diferenciálních rovnic,
experimentální podstata fyzikálního modelování.
4. Charakteristické vlastnosti průtočných reaktorů - retenční čas, střední
retenční čas, pístový tok, zkratové proudění, promíchávaný objem, mrtvý
objem. Experimentální stanovení retenčních časů, metoda impuls-odezva, RTD
křivky.
II. Využití modelování v metalurgickém inženýrství
1. Fyzikální modelování procesů v metalurgii.
2. Využití numerického modelování pomocí CFD programu FLUENT.
III. Algoritmizace metalurgických pochodů
1. Algoritmus. Algoritmizace úloh. Vývojové diagramy. Přechod od algoritmu
k programu. Možnosti algoritmizace ocelářských procesů. Problematika
legování oceli a možnosti algoritmizace výpočtů legování.
2. Použití feroslitin různého chemického složení pro legování oceli -
teoretické základy, algoritmizace úlohy.
3. Výpočet vsázky pro výrobu vysokolegovaných ocelí, základní výpočtové
postupy, bilanční rovnice.
4. Odsíření oceli při různých způsobech aplikace strusky - teoretické základy
odsíření oceli, algoritmizace.
5. Spotřeba kyslíku na oxidaci uhlíku v kyslíkonvertorovém procesu, vliv
obsahu uhlíku, současná oxidace železa, algoritmizace.
6. Statický model tavby v kyslíkovém konvertoru - teoretické základy
technologie, principy statického a dynamického řízení kyslíkového
konvertoru, materiálová bilance tavby.
7. Statický model tavby v kyslíkovém konvertoru, optimalizace vstupních údajů.
I. Modelování procesů
1. Systém, vlastnosti systému, proces, operace, model, modelování.
2. Numerické modelování procesů – podstata, proudění a jeho základní
charakteristiky, metody matematického modelování proudění, statistické modely
turbulence, okrajové podmínky, základy k programu FLUENT.
3. Fyzikální modelování - podobnost, kriteria podobnosti, tvorba kriterii
podobnosti, dimenzionální analýza, analýza diferenciálních rovnic,
experimentální podstata fyzikálního modelování.
4. Charakteristické vlastnosti průtočných reaktorů - retenční čas, střední
retenční čas, pístový tok, zkratové proudění, promíchávaný objem, mrtvý
objem. Experimentální stanovení retenčních časů, metoda impuls-odezva, RTD
křivky.
II. Využití modelování v metalurgickém inženýrství
1. Fyzikální modelování procesů v metalurgii.
2. Využití numerického modelování pomocí CFD programu FLUENT.
III. Algoritmizace metalurgických pochodů
1. Algoritmus. Algoritmizace úloh. Vývojové diagramy. Přechod od algoritmu
k programu. Možnosti algoritmizace ocelářských procesů. Problematika
legování oceli a možnosti algoritmizace výpočtů legování.
2. Použití feroslitin různého chemického složení pro legování oceli -
teoretické základy, algoritmizace úlohy.
3. Výpočet vsázky pro výrobu vysokolegovaných ocelí, základní výpočtové
postupy, bilanční rovnice.
4. Odsíření oceli při různých způsobech aplikace strusky - teoretické základy
odsíření oceli, algoritmizace.
5. Spotřeba kyslíku na oxidaci uhlíku v kyslíkonvertorovém procesu, vliv
obsahu uhlíku, současná oxidace železa, algoritmizace.
6. Statický model tavby v kyslíkovém konvertoru - teoretické základy
technologie, principy statického a dynamického řízení kyslíkového
konvertoru, materiálová bilance tavby.
7. Statický model tavby v kyslíkovém konvertoru, optimalizace vstupních údajů.