1. Základní pojmy modelování procesů, klasifikace modelů podle různých kritérií. Fyzikální modelování, jeho význam v různých vědních oblastech. Bezrozměrové parametry (kritéria podobnosti), rozdělení a vlastnosti kritérií podobnosti. Stanovení bezrozměrových parametrů metodou podobnostní transformace základních rovnic. Podobnostní transformace Navier-Stokesových rovnic.
2. Přibližné fyzikální modelování. Automodelnost. Fyzikální význam některých kritérií podobnosti, problematika současného dodržení identity Fr a Re kritéria. Stanovení měřítek objemového průtoku.
3. Experimentální podstata fyzikálního modelování. Metody stanovení retenčních časů, metoda impuls-odezva, RTD křivky, vizualizace proudění. Zákonitosti výstavby fyzikálních modelů. Základní experimentální postupy při fyzikálním modelování proudění tekutých kovů.
4. Základy teorie průtokových reaktorů – hypotetické modely proudění, pístový tok, dokonalé promíchávání. Reálný reaktor. Teoretický retenční čas. C křivka, F křivka. Kombinovaný model proudění, střední retenční čas, zkratové proudění, mrtvý objem. Disperzní model proudění.
5. Teoretické základy matematického modelování přenosových jevů v tekutině. Kinetika přenosu prvku mězi dvěma fázemi. Experimentální studium přenosových procesů a jejich uplatnění v technologické praxi odsíření a odfosfoření.
6. Výběr vhodných matematických modelů pro popis přechodových dějů metalurgických procesů. Empiricko – matematický a fyzikálně (adekvátně) – matematický přístup řešení. Teoretické základy matematického popisu přechodových dějů. Přístupy a metody řešení aproximace a regrese. Parametrická identifikace.
2. Přibližné fyzikální modelování. Automodelnost. Fyzikální význam některých kritérií podobnosti, problematika současného dodržení identity Fr a Re kritéria. Stanovení měřítek objemového průtoku.
3. Experimentální podstata fyzikálního modelování. Metody stanovení retenčních časů, metoda impuls-odezva, RTD křivky, vizualizace proudění. Zákonitosti výstavby fyzikálních modelů. Základní experimentální postupy při fyzikálním modelování proudění tekutých kovů.
4. Základy teorie průtokových reaktorů – hypotetické modely proudění, pístový tok, dokonalé promíchávání. Reálný reaktor. Teoretický retenční čas. C křivka, F křivka. Kombinovaný model proudění, střední retenční čas, zkratové proudění, mrtvý objem. Disperzní model proudění.
5. Teoretické základy matematického modelování přenosových jevů v tekutině. Kinetika přenosu prvku mězi dvěma fázemi. Experimentální studium přenosových procesů a jejich uplatnění v technologické praxi odsíření a odfosfoření.
6. Výběr vhodných matematických modelů pro popis přechodových dějů metalurgických procesů. Empiricko – matematický a fyzikálně (adekvátně) – matematický přístup řešení. Teoretické základy matematického popisu přechodových dějů. Přístupy a metody řešení aproximace a regrese. Parametrická identifikace.