Funkce jedné reálné proměnné
Definiční obor, obor hodnot, funkce sudá, lichá, periodická, ohraničená,
neohraničená, monotonní, složená, prostá, inverzní. Elementární funkce. Limita
funkce, spojitost funkce.
Derivace funkce jedné proměnné
Definice, geometrický a fyzikální význam. Vzorce a pravidla pro derivování.
Derivace vyšších řádů. Diferenciál funkce. L´Hospitalovo pravidlo monotonnost,
lokální extrémy, konvexnost, konkávnost, inflexní body, asymptoty. Derivace
parametricky zadané funkce.
Lineární algebra
Aritmetické vektory, operace, lineární závislost a nezávislost. Matice, hodnost
matice, operace s maticemi. Typy matic - regulární, jednotková, inverzní.
Determinanty, definice, vlastnosti, výpočet hodnoty. Soustavy lineárních
algebraických rovnic, Cramerovo pravidlo, Frobeniova věta, Gaussova eliminační
metoda.
Analytická geometrie v prostoru
Geometrické vektory, operace s nimi. Skalární, vektorový, smíšený součin a
jejich užití. Analytické vyjádření roviny a přímky v prostoru, jejich vzájemné
poloha, metrické úlohy.
Definiční obor, obor hodnot, funkce sudá, lichá, periodická, ohraničená,
neohraničená, monotonní, složená, prostá, inverzní. Elementární funkce. Limita
funkce, spojitost funkce.
Derivace funkce jedné proměnné
Definice, geometrický a fyzikální význam. Vzorce a pravidla pro derivování.
Derivace vyšších řádů. Diferenciál funkce. L´Hospitalovo pravidlo monotonnost,
lokální extrémy, konvexnost, konkávnost, inflexní body, asymptoty. Derivace
parametricky zadané funkce.
Lineární algebra
Aritmetické vektory, operace, lineární závislost a nezávislost. Matice, hodnost
matice, operace s maticemi. Typy matic - regulární, jednotková, inverzní.
Determinanty, definice, vlastnosti, výpočet hodnoty. Soustavy lineárních
algebraických rovnic, Cramerovo pravidlo, Frobeniova věta, Gaussova eliminační
metoda.
Analytická geometrie v prostoru
Geometrické vektory, operace s nimi. Skalární, vektorový, smíšený součin a
jejich užití. Analytické vyjádření roviny a přímky v prostoru, jejich vzájemné
poloha, metrické úlohy.