Osnova přednášek
1. Reálná funkce jedné reálné proměnné. Definice, graf. Funkce ohraničené,
monotónní, sudé, liché, periodické. Funkce prosté, inverzní, složené.
2. Elementární funkce (včetně cyklometrických funkcí ).
3. Limita funkce a nevlastní limita funkce. Limity v nevlastních bodech.
Spojité a nespojité funkce.
4. Diferenciální počet funkcí jedné proměnné. Derivace funkce, její geometrický
a fyzikální význam. Pravidla derivování.
5. Derivace elementárních funkcí.
6. Diferenciál funkce. Derivace vyšších řádů. L’Hospitalovo pravidlo.
7. Použití derivací k zjišťování monotónnosti, konvexnosti a konkávnosti funkce.
8. Extrémy funkcí. Asymptoty. Sestrojení grafu funkce.
9. Lineární algebra a analytická geometrie. Vektorový prostor. Vektory,
lineární závislost vektorů, lineární kombinace vektorů. Dimenze a báze
vektorového prostoru.
10. Determinanty. Vlastnosti determinantů. Výpočet hodnoty determinantu.
11. Matice. Operace s maticemi. Hodnost matice a její výpočet. Inverzní matice.
12. Řešení soustav lineárních rovnic. Frobeniova věta. Cramerovo pravidlo,
Gaussova eliminační metoda. Výpočet inverzní matice Gaussovou metodou.
13. Skalární, vektorový a smíšený součin vektorů a jejich vlastnosti.
Rovnice roviny.
14. Rovnice přímky v prostoru E3.Vzájemná poloha rovin, přímek, přímky a roviny.
Osnova cvičení
1. Definiční obor funkce.
Funkce ohraničené, monotónní, sudé, liché, periodické.
Funkce prosté, inverzní, složené. Elementární funkce.
Cyklometrické funkce. Limity funkcí.
Derivace a diferenciál funkcí.
Výpočet limit funkcí L’Hospitalovým pravidlem. Monotónní funkce, extrémy.
Konvexní a konkávní funkce, inflexní bod.
Asymptoty křivky. Průběh funkce.
Operace s aritmetickými vektory. Lineární závislost vektorů, lineární kombinace
vektorů. Dimenze a báze vektorového prostoru. 2. test (užití derivací funkce)
Determinanty. Úpravy determinantu. Výpočet determinantu rozvojem podle prvků
libovolné řady.
Základní operace s maticemi. Inverzní matice.
Řešení soustav lineárních rovnic.
3. test (výpočet determinantu, hodnost matice, řešení soustavy, inverzní
matice). Součiny vektorů. Rovnice roviny.
Rovnice přímky. Vzájemné polohy útvarů.
1. Reálná funkce jedné reálné proměnné. Definice, graf. Funkce ohraničené,
monotónní, sudé, liché, periodické. Funkce prosté, inverzní, složené.
2. Elementární funkce (včetně cyklometrických funkcí ).
3. Limita funkce a nevlastní limita funkce. Limity v nevlastních bodech.
Spojité a nespojité funkce.
4. Diferenciální počet funkcí jedné proměnné. Derivace funkce, její geometrický
a fyzikální význam. Pravidla derivování.
5. Derivace elementárních funkcí.
6. Diferenciál funkce. Derivace vyšších řádů. L’Hospitalovo pravidlo.
7. Použití derivací k zjišťování monotónnosti, konvexnosti a konkávnosti funkce.
8. Extrémy funkcí. Asymptoty. Sestrojení grafu funkce.
9. Lineární algebra a analytická geometrie. Vektorový prostor. Vektory,
lineární závislost vektorů, lineární kombinace vektorů. Dimenze a báze
vektorového prostoru.
10. Determinanty. Vlastnosti determinantů. Výpočet hodnoty determinantu.
11. Matice. Operace s maticemi. Hodnost matice a její výpočet. Inverzní matice.
12. Řešení soustav lineárních rovnic. Frobeniova věta. Cramerovo pravidlo,
Gaussova eliminační metoda. Výpočet inverzní matice Gaussovou metodou.
13. Skalární, vektorový a smíšený součin vektorů a jejich vlastnosti.
Rovnice roviny.
14. Rovnice přímky v prostoru E3.Vzájemná poloha rovin, přímek, přímky a roviny.
Osnova cvičení
1. Definiční obor funkce.
Funkce ohraničené, monotónní, sudé, liché, periodické.
Funkce prosté, inverzní, složené. Elementární funkce.
Cyklometrické funkce. Limity funkcí.
Derivace a diferenciál funkcí.
Výpočet limit funkcí L’Hospitalovým pravidlem. Monotónní funkce, extrémy.
Konvexní a konkávní funkce, inflexní bod.
Asymptoty křivky. Průběh funkce.
Operace s aritmetickými vektory. Lineární závislost vektorů, lineární kombinace
vektorů. Dimenze a báze vektorového prostoru. 2. test (užití derivací funkce)
Determinanty. Úpravy determinantu. Výpočet determinantu rozvojem podle prvků
libovolné řady.
Základní operace s maticemi. Inverzní matice.
Řešení soustav lineárních rovnic.
3. test (výpočet determinantu, hodnost matice, řešení soustavy, inverzní
matice). Součiny vektorů. Rovnice roviny.
Rovnice přímky. Vzájemné polohy útvarů.