Přeskočit na hlavní obsah
Přeskočit hlavičku
Terminated in academic year 2019/2020

Bakalářská Matematika I

Typ studia navazující magisterskébakalářské
Jazyk výuky angličtina
Kód 714-0566/03
Zkratka BM I
Název předmětu česky Bakalářská Matematika I
Název předmětu anglicky Bachelor Mathematics I
Kreditů 5
Garantující katedra Katedra matematiky a deskriptivní geometrie
Garant předmětu Mgr. Dagmar Dlouhá, Ph.D.

Subject syllabus

1. Reálná funkce jedné reálné proměnné. Definice, graf. Funkce ohraničené, monotónní, sudé, liché, periodické. Funkce prosté, inverzní, složené.
2 Elementární funkce (včetně cyklometrických funkcí ).
3 Limita funkce. Spojité a nespojité funkce.
4 Diferenciální počet funkcí jedné proměnné. Derivace funkce, její geometrický a fyzikální význam. Pravidla derivování.
5 Derivace elementárních funkcí.
6 Diferenciál funkce. Taylorův polynom. Derivace funkce dané parametricky. Derivace vyšších řádů. L'Hospitalovo pravidlo
7 Použití derivací k zjišťování monotónnosti, konvexnosti a konkávnosti funkce.
8 Extrémy funkcí. Asymptoty. Sestrojení grafu funkce.
9 Vektory, lineární nezávislost. Matice. Operace s maticemi.
10 Determinanty. Vlastnosti determinantů. Výpočet hodnoty determinantu.
11 Hodnost matice a její výpočet. Inverzní matice.
12 Řešení soustav lineárních rovnic. Frobeniova věta. Gaussova eliminační metoda .
13 Skalární, vektorový a smíšený součin vektorů a jejich vlastnosti. Rovnice roviny.
14 Rovnice přímky a roviny v E3. Vzájemné polohy přímek a rovin.

Literature

Burda, P., Havelek, R., Hradecká, R., Kreml.P: Matematika I, Učební texty VŠB-TU Ostrava, ISBN 978-80-248-1296-0 , www.studopory.vsb.cz

Advised literature

Škrášek, J. a kol.: Základy aplikované matematiky I. a II. SNTL, Praha 1989, IISBN 04-0544-89
Burda, P., Kreml, P.: Diferenciální počet funkcí jedné proměnné. Matematika
IIa. Učební texty VŠB - TUO, 2004, ISBN 80-248--0634-7
Burda, P., Havelek, R., Hradecká, R.: Algebra a analytická geometrie.
Matematika I. Učební texty VŠB - TUO, 1997, ISBN 80-7078-479-2