Kvantová fyzika
1. Úvod – historické souvislosti a potřeba vzniku nové teorie. Postuláty kvantové mechaniky, časová a bezčasová Schrödingerova rovnice. Rovnice kontinuity.
2. Matematický aparát – operátory, lineární hermiteovské operátory, veličiny, měřitelnost. Souřadnicová reprezentace. Základní vlastnosti operátorů, úpravy operátorových výrazů, vlastní funkce a vlastní hodnoty, střední hodnota, operátory odpovídající vybraným fyzikálním veličinám a jejich vlastnosti.
3. Volná částice, vlnová klubka. Relace neurčitosti.
4. Modelové aplikace stacionární Schrödingerovy rovnice – konstantní potenciál, nekonečně hluboká pravoúhlá potenciálová jáma – spojité a diskrétní spektrum energií. Další aplikace: potenciálový schod, konečně hluboká pravoúhlá potenciálová jáma, pravoúhlá potenciálová bariéra - tunelový jev. Aproximace vybraných reálných situací pravoúhlými potenciály.
5. Harmonický oscilátor v souřadnicové a Fockově reprezentaci.
6. Sféricky symetrické pole, atom vodíku. Spin. Soubory nerozlišitelných částic, Pauliho princip. Atomy s více elektrony, optická a rentgenová spektra.
7. Interpretace kvantové mechaniky.
Kvantová chemie
1. Základní aproximace v teorii chemické vazby.
2. Symetrie v kvantové chemii.
3. Systémy s více elektrony.
4. Základní a speciální metody teorie chemické vazby.
5. Interakce molekul s elektrony a fotony.
6. Atom a molekula ve vnějším poli.
7. Chemická reaktivita.
1. Úvod – historické souvislosti a potřeba vzniku nové teorie. Postuláty kvantové mechaniky, časová a bezčasová Schrödingerova rovnice. Rovnice kontinuity.
2. Matematický aparát – operátory, lineární hermiteovské operátory, veličiny, měřitelnost. Souřadnicová reprezentace. Základní vlastnosti operátorů, úpravy operátorových výrazů, vlastní funkce a vlastní hodnoty, střední hodnota, operátory odpovídající vybraným fyzikálním veličinám a jejich vlastnosti.
3. Volná částice, vlnová klubka. Relace neurčitosti.
4. Modelové aplikace stacionární Schrödingerovy rovnice – konstantní potenciál, nekonečně hluboká pravoúhlá potenciálová jáma – spojité a diskrétní spektrum energií. Další aplikace: potenciálový schod, konečně hluboká pravoúhlá potenciálová jáma, pravoúhlá potenciálová bariéra - tunelový jev. Aproximace vybraných reálných situací pravoúhlými potenciály.
5. Harmonický oscilátor v souřadnicové a Fockově reprezentaci.
6. Sféricky symetrické pole, atom vodíku. Spin. Soubory nerozlišitelných částic, Pauliho princip. Atomy s více elektrony, optická a rentgenová spektra.
7. Interpretace kvantové mechaniky.
Kvantová chemie
1. Základní aproximace v teorii chemické vazby.
2. Symetrie v kvantové chemii.
3. Systémy s více elektrony.
4. Základní a speciální metody teorie chemické vazby.
5. Interakce molekul s elektrony a fotony.
6. Atom a molekula ve vnějším poli.
7. Chemická reaktivita.