Skip to main content
Skip header

Data mining

Type of study Follow-up Master
Language of instruction Czech
Code 157-0386/02
Abbreviation DM
Course title Data mining
Credits 5
Coordinating department Department of Systems Engineering and Informatics
Course coordinator doc. dr hab. Maria Antonina Mach-Król

Osnova předmětu

1. Introduction (definition of data mining, relation to the other scientific disciplines, clarification of the basic concepts).
2. Data, data transformation, normalization, distance measures, similarity measures, etc.
3. Data mining (general): data mining processes (SEMMA, CRISP-DM, etc.), data mining tasks.
4. Association rules
5. Classification
6. Clustering
7. Detection of outliers
8. Text mining, sentiment analysis
9. Environment of software tools and languages
10. Future trends in data mining

E-learning

Students have all relevant presentations from lectures and instructions in LMS Moodle

Povinná literatura

BRAMER, Max. Principles of data mining. London: Springer-Verlag, 2020. ISBN: 978-1-4471-7492-9.
LENDAVE Vijaysinh. Beginner's Guide to WEKA - A Tool for ML and Analytics. Delhi: Analztics India, 2023 - online podporní material.

Advised literature

KUMAR Jugnesh. Data Warehouse and Data Mining: Concepts, techniques and real life applications. Uttar Pradesh: PB Publications, 2023. ISBN: 9355517343 .
HUDEC, Miroslav. Fuzziness in Information Systems - How to Deal with Crisp and Fuzzy Data in Selection, Classification, and Summarization. Cham: Springer, 2016. ISBN 978-3-319-42516-0 
AGGRAWAL, Charu. Data Mining: The Textbook. Cham: Springer, 2015. ISBN 978-3-319-14141-1 .