1. Introduction to statistics, data processing, and stochastic modeling
2. Linear regression, least squares method
3. Nonlinear regression, selection of the optimal model
4. Combinatorics
5. Probability theory, Kolmogorov’s axioms
6. Conditional probability, Bayes’ theorem
7. Discrete random variable
8. Continuous random variable
9. Normal distribution
10. Parameter estimation: method of moments, maximum likelihood estimation
11. Interval estimation, central limit theorem
12. Hypothesis testing: parametric tests
13. Hypothesis testing: nonparametric tests
2. Linear regression, least squares method
3. Nonlinear regression, selection of the optimal model
4. Combinatorics
5. Probability theory, Kolmogorov’s axioms
6. Conditional probability, Bayes’ theorem
7. Discrete random variable
8. Continuous random variable
9. Normal distribution
10. Parameter estimation: method of moments, maximum likelihood estimation
11. Interval estimation, central limit theorem
12. Hypothesis testing: parametric tests
13. Hypothesis testing: nonparametric tests