Skip to main content
Skip header
Terminated in academic year 2020/2021

Numerical Methods

Type of study Follow-up Master
Language of instruction Czech
Code 230-0226/01
Abbreviation NM
Course title Numerical Methods
Credits 4
Coordinating department Department of Mathematics
Course coordinator RNDr. Jana Staňková, Ph.D.

Subject syllabus

. Problematics of numerical computing . Sources and types of errors. Conditionality of problems and algorithms.
2. Methods for solving algebraic and transcendental equations. The bisection method, the iterative method for solving equations.
3. The Newton method, the Regula-Falsi (False-Position) method, the combined method.
4. Solving systems of linear equations. Direct solution methods. Iterative methods (the Jacobi method, the Seidel method). Matrix norms.
5. Interpolation and approximation of functions. Approximation – the least-square method. Lagrange interpolation polynomials.
6. Newton interpolation polynomials. Spline-function interpolation.
7. Numerical integration. Newton-Cotes quadrature formulas. Composed quadrature formulas. Error estimation.
8. The Richardson extrapolation.
9. Initial value problems for ordinary differential equations. One-step methods. The Euler method. Error estimation using the half-step method.
10. The Runge-Kutta methods. Estimation of the approximation error.

Literature

Abhishek, G.: Numerical Methods Using MATLAB. Springer Nature 2014, ISBN 9781484201558 .

Advised literature

Boháč, Z.,Častová, N.: Základní numerické metody. Skriptum VŠB, Ostrava 1985.
Přikryl, P.: Numerické metody matematické analýzy. MVŠT, SNTL 1985.
Ralston, A.: Základy numerické matematiky. Academia 1973.
Harshbarger, Ronald; Reynolds, James: Calculus with Applications, D.C. Heath and
Company 1990, ISBN 0-669-21145-1 
Görner, V., Nedoma, P. Programový systém MATLAB, ČVUT Praha, 1991 MATLAB Reference Guide, Mass. 01760, 1994.