Principles of mathematical modeling. Model quantities.
Basic relations, local and global balance.
One-dimensional stationary states.
Classification of boundary problems. Corectness of mathematical model.
Non-stationary processes - one-dimensional case. Initial problems.
Method of characteristics for the PDEs of the first order.
Application - free thermal convection.
PDEs of the second order: classification, Fourier method.
Fourier method for parabolic and hyperbolic PDEs.
Multi-dimensional stationary states.
Fourier method for elliptic PDEs. Boundary problems for multivariate problems.
Facultative themes.
Basic relations, local and global balance.
One-dimensional stationary states.
Classification of boundary problems. Corectness of mathematical model.
Non-stationary processes - one-dimensional case. Initial problems.
Method of characteristics for the PDEs of the first order.
Application - free thermal convection.
PDEs of the second order: classification, Fourier method.
Fourier method for parabolic and hyperbolic PDEs.
Multi-dimensional stationary states.
Fourier method for elliptic PDEs. Boundary problems for multivariate problems.
Facultative themes.