Syllabus of lecture
1. Fourier series: periodic functions, Fourier coefficients, functions of the period 2, function of the period T, even and odd functions
2. Even and odd functions, half - range cosine and sine series, convergence of Fourier series
3. Solution of 2nd order linear differential equations with constant coefficients by Fourier series
4. Partial differential equations: general discussion
5. Methods of solutions of partial differential equations of the first order
6. Methods of solutions of partial differential equations of the second order
7. Fourier´s method of separation
8. 2nd order partial linear differential equations
9. Canonical form of 2nd order partial linear differential equations
10. Laplace equation: separated solutions, boundary conditions
11. Solution of the one-dimensional wave equation: d’Alembert solution, method of the
separation of variables,
12. Solution of a boundary problem
13. Solution of the heat-conduction: one dimensional heat conduction equation, separation method.
14. Reserve
1. Fourier series: periodic functions, Fourier coefficients, functions of the period 2, function of the period T, even and odd functions
2. Even and odd functions, half - range cosine and sine series, convergence of Fourier series
3. Solution of 2nd order linear differential equations with constant coefficients by Fourier series
4. Partial differential equations: general discussion
5. Methods of solutions of partial differential equations of the first order
6. Methods of solutions of partial differential equations of the second order
7. Fourier´s method of separation
8. 2nd order partial linear differential equations
9. Canonical form of 2nd order partial linear differential equations
10. Laplace equation: separated solutions, boundary conditions
11. Solution of the one-dimensional wave equation: d’Alembert solution, method of the
separation of variables,
12. Solution of a boundary problem
13. Solution of the heat-conduction: one dimensional heat conduction equation, separation method.
14. Reserve