1. Diskretization of mechanical structures, variable calculus in mechanics, Ritz
method
2. Deformation variant of finite element method
3. One dimension stright element, shape function at bending, stiffness matrix, load vector,
4. Global stiffness matrix and global load vector, optimisation of band matrix, basic matrix equation of FEM and their solution
5. Transformation matrixes, plane and space frame structures
6. Plane and Space elements
7. Dynamic problems and FEM, mass matrix
8. Eigenfrequencies and eigenshapes of vibrations, iterations method of solutions
9. Step by steps methods; modal analysis
10.General problem statement of FEM
method
2. Deformation variant of finite element method
3. One dimension stright element, shape function at bending, stiffness matrix, load vector,
4. Global stiffness matrix and global load vector, optimisation of band matrix, basic matrix equation of FEM and their solution
5. Transformation matrixes, plane and space frame structures
6. Plane and Space elements
7. Dynamic problems and FEM, mass matrix
8. Eigenfrequencies and eigenshapes of vibrations, iterations method of solutions
9. Step by steps methods; modal analysis
10.General problem statement of FEM