Skip to main content
Skip header

Numerical Methods

Type of study Doctoral
Language of instruction Czech
Code 330-0924/01
Abbreviation NUMET
Course title Numerical Methods
Credits 10
Coordinating department Department of Applied Mechanics
Course coordinator prof. Ing. Karel Frydrýšek, Ph.D., FEng.

Subject syllabus

1. Importance, history and application of numerical methods, definition of nonlinearities

2. Types and using of numerical methods (FEM, BEM, CDM, FVM, MC, NR etc.)

3. Application of numerical methods in linear continuum (truss, beams, frames, 2D and 3D bodies, statics, elasticity), programming

4. Application of numerical methods in linear continuum (truss, beams, frames, 2D and 3D bodies, mechanical contact, nonlinearities, buckling, plasticity, elastomers, fatigue, creep, thermal loading, dynamics etc.), programming

5. Application of numerical methods in mechanics of liquids, programming

6. Application of numerical methods in stochastic and probabilistic mechanics, deterministic and probabilistic approach and reliability assessment, programming

7. Application of classical commercial sw (ANSYS, MSC.MARC, MSC.NASTRAN, ANTHILL, MATLAB, MATHCAD etc.)

Literature

HALAMA, R., SEDLÁK, J., ŠOFER, M. Phenomenological Modelling of Cyclic Plasticity, Chapter in: Numerical Modelling, Peep Miidla (Ed.), InTech, 2012, p. 329-354.

MADENCI, E., GUVEN, I. The Finite Element Method and Applications in Engineering Using ANSYS®, Springer, 2005, 686 p.

BEER, G., WATSON, J.O. Introduction to Finite and Boundary Element Methods for Engineers, New York, 1992.

CHABOCHE, J.L., LEMAITRE, J. Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.

BLAHETA, R. Numerical Methods in Elasto-Plasticity, Peres Publishers, Nové Město blízko Chlumce nad Cidlinou, 1999.

HALAMA, R., SEDLÁK, J., ŠOFER, M. Phenomenological Modelling of Cyclic Plasticity, Chapter in: Numerical Modelling, Peep Miidla (Ed.), InTech, 2012, p. 329-354.

MADENCI, E., GUVEN, I. The Finite Element Method and Applications in Engineering Using ANSYS®, Springer, 2005, 686 p.

Advised literature

DUNNE, F; PETRINIC, N. Introduction to Computational Plasticity. Oxford University Press, 2005. 256 p.

PARÍS, F., CAŃAS, J. Boundary Element Method - Fundamentals and Applications, Oxford University Press, New York,1997.

DUNNE, F, PETRINIC, N. Introduction to Computational Plasticity. Oxford University Press, 2005. 256 p.