Lectures
1. Physical properties of liquids and their measurements (density, viscosity liquids), the dependence on temperature a pressure
2. Static characteristics of hydraulic systems, simple lines, resistance to motion, friction, local resistance, a static pressure drop, characteristics of tubes
3. Simulation of pressure drop and static characteristics in the program SimHydraulics, SimHydraulics elements, calculation of the pressure gradient, calculation of static characteristics
4. Calculation of static characteristics of branched or complex network
5. Simulation of dynamic characteristics in the program SimHydraulics, unsteady flow, resistance to motion, resistance to acceleration, deformation resistance and hydraulic capacity, symbols of hydraulic resistance
6. Solving hydraulic shock, T -element, segmented pipeline, distributor, distributor control, numerical solutions - SimHydraulics, the speed of sound in pipes
7. Control elements
8. Solution of complex dynamics of hydraulic circuit using SimHydraulics
9. Solving a circuit with pumps, centrifugal pump in the SimHydraulics, 1D a 2D characteristics
10. Circuits with pumps, circuit - pressure drop, static characteristics, hydraulic shock
11. Ordering of pumps - serial, parallel, circuit
12. The momentum of water jet, the effects of power flowing fluid on surfaces and solids, the theorem of change of momentum, the application of theorems on the momentum exchange
13. Power effects of fluid flow on general surfaces and solids, the mathematical model of fluid flow, mass transfer, momentum, boundary conditions, conditions of entry a exit, network elements, methods of mathematical modeling of turbulent flow
14. Pressure forces on plate due to fluid flow from the nozzle - examples
Exercises
1. Bernoulli's equation for ideal and real fluid loss calculation, Reynolds numbers, the coefficient of friction.
2. Measurement of physical properties of fluids - a program, static characteristics of pipes and arranged pipe - program.
3. Evaluation of measurement of physical properties of liquids in Excel, the evaluation of static characteristics of pipes and arranged pipe in the Excel.
4. Introduction to the Matlab, calculate the pressure gradient on one pipe.
5. Calculation of static characteristics of a pipe, creating subsystem variable input signal.
6. Transfer data to the Excel, the characteristics of serial and parallel arranged pipes and compared with Excel.
7. Measurement of of hydraulic shock - characteristics of pumps and arranged pumps - the program.
8. Evaluation of hydraulic shock measurement, determination of basic parameters at steady state of hydraulic shock.
9. Modelling of hydraulic shock for unsteady state, determine the effect of equivalent length, the coefficient of discharge valve and air flow on hydraulic shock.
10. Evaluation of measurement of pumps, serial and parallel arranging of pumps in the Excel, calculate power input, power and specific energy of pumps
11. Modelling of centrifugal pumps in Matlab and its ability to enter - 1D and 2D characteristics, identification of the basic parameters in the steady state of the pump.
12. Enter the catalog of the pump, affine relations for the basic parameters of the pump.
13. Modeling series and parallel arranging of pumps.
14. Comparison of the modeled arranging of pumps with the calculation in the Excel.
1. Physical properties of liquids and their measurements (density, viscosity liquids), the dependence on temperature a pressure
2. Static characteristics of hydraulic systems, simple lines, resistance to motion, friction, local resistance, a static pressure drop, characteristics of tubes
3. Simulation of pressure drop and static characteristics in the program SimHydraulics, SimHydraulics elements, calculation of the pressure gradient, calculation of static characteristics
4. Calculation of static characteristics of branched or complex network
5. Simulation of dynamic characteristics in the program SimHydraulics, unsteady flow, resistance to motion, resistance to acceleration, deformation resistance and hydraulic capacity, symbols of hydraulic resistance
6. Solving hydraulic shock, T -element, segmented pipeline, distributor, distributor control, numerical solutions - SimHydraulics, the speed of sound in pipes
7. Control elements
8. Solution of complex dynamics of hydraulic circuit using SimHydraulics
9. Solving a circuit with pumps, centrifugal pump in the SimHydraulics, 1D a 2D characteristics
10. Circuits with pumps, circuit - pressure drop, static characteristics, hydraulic shock
11. Ordering of pumps - serial, parallel, circuit
12. The momentum of water jet, the effects of power flowing fluid on surfaces and solids, the theorem of change of momentum, the application of theorems on the momentum exchange
13. Power effects of fluid flow on general surfaces and solids, the mathematical model of fluid flow, mass transfer, momentum, boundary conditions, conditions of entry a exit, network elements, methods of mathematical modeling of turbulent flow
14. Pressure forces on plate due to fluid flow from the nozzle - examples
Exercises
1. Bernoulli's equation for ideal and real fluid loss calculation, Reynolds numbers, the coefficient of friction.
2. Measurement of physical properties of fluids - a program, static characteristics of pipes and arranged pipe - program.
3. Evaluation of measurement of physical properties of liquids in Excel, the evaluation of static characteristics of pipes and arranged pipe in the Excel.
4. Introduction to the Matlab, calculate the pressure gradient on one pipe.
5. Calculation of static characteristics of a pipe, creating subsystem variable input signal.
6. Transfer data to the Excel, the characteristics of serial and parallel arranged pipes and compared with Excel.
7. Measurement of of hydraulic shock - characteristics of pumps and arranged pumps - the program.
8. Evaluation of hydraulic shock measurement, determination of basic parameters at steady state of hydraulic shock.
9. Modelling of hydraulic shock for unsteady state, determine the effect of equivalent length, the coefficient of discharge valve and air flow on hydraulic shock.
10. Evaluation of measurement of pumps, serial and parallel arranging of pumps in the Excel, calculate power input, power and specific energy of pumps
11. Modelling of centrifugal pumps in Matlab and its ability to enter - 1D and 2D characteristics, identification of the basic parameters in the steady state of the pump.
12. Enter the catalog of the pump, affine relations for the basic parameters of the pump.
13. Modeling series and parallel arranging of pumps.
14. Comparison of the modeled arranging of pumps with the calculation in the Excel.