Skip to main content
Skip header
Terminated in academic year 2014/2015

Introduction to FEM

Type of study Bachelor
Language of instruction Czech
Code 339-0312/01
Abbreviation UMKP
Course title Introduction to FEM
Credits 2
Coordinating department Department of Mechanics of Materials
Course coordinator prof. Ing. Radim Halama, Ph.D.

Subject syllabus

1. Lecture – Elementary thought of FEM. Selection of interpolator functions. Types of elements. Derivation of stiffness matrix of a truss element. Equations of an elasticity mathematical theory. Minimal principle of potential energy. Process at FEM calculation. Conditions of convergence.
2. Lecture – assembly of global stiffness matrix and right side. Foundations of Ansys Workbench (description of individual models, work with help). Example 1: application example – beam in 3D.
3. Lecture – Computational modelling. Simplified exercises from 3D to 1D and 2D. Example 2: wrenche.
4. Lecture – Choice of boundary conditions. Singularity. Reading geometry from CAD model and its modification. Example 3: symmetry usage.
5. Lecture- Error of FEM calculation (aposteriori estimate). Adaptive FEM algorithm (h-method). Example 4: Think walled pressure tin.
6. Lecture - Seminary work.
7. Lecture – Seminary work.
8. Lecture – Seminary work.
9. Lecture – Final test, finalization and handing over a seminary work.

E-learning

no

Literature

1] BEER,G.-WATSON,J.O.: Introduction to Finite and Boundary Element Methods for Engineers, John Wiley & Sons,1992
[2] BROWN,D.K.: An Introduction to the Finite Element Method using BASIC Programs, Surrey University Press, Blackie & Son Ltd, 1990, 2nd ed.

Advised literature

1] BEER,G.-WATSON,J.O.: Introduction to Finite and Boundary Element Methods for Engineers, John Wiley & Sons,1992
[2] BROWN,D.K.: An Introduction to the Finite Element Method using BASIC Programs, Surrey University Press, Blackie & Son Ltd, 1990, 2nd ed.