Skip to main content
Skip header
Terminated in academic year 2012/2013

Numerical Methods

Type of study Doctoral
Language of instruction Czech
Code 339-0918/01
Abbreviation NM
Course title Numerical Methods
Credits 10
Coordinating department Department of Mechanics of Materials
Course coordinator prof. Ing. Jiří Lenert, CSc.

Subject syllabus

Předmět rozšiřuje teoretické základy MKP a MHP získané v bakalářském a
magisterském studiu. Numerické metody jsou v současné době v široké formě
využívány pro řešení numerické analýzy mechanických vlastností konstrukcí.
Konkrétně se zabývá dále uvedenými problémy:
Metoda konečných prvků.
Základní principy a energetické teorémy. Tuhost a poddajnost, matice tuhosti,
princip virtuálních prací, princip komplementární virtuální práce, princip
minima potenciální energie systému, komplementární energetický teorém. Diskrétní
systémy. Systém elektrické sítě. Potrubní kapalinový systém. Aplikace principu
virtuálních prácí. Ritzova metoda, aplikace Ritzovy metody u ohybu nosníků,
aplikace pro namáhání v tahu a tlaku, řešení rotačně symetrických problémů
(rotující tenký kruhový disk konstantní tloušťky). Varianta Ritzovy metody za
použití komplementární potenciální energie. Statická analýza prutových soustav.
Matice tuhosti pro tyčový prvek, matice tuhosti pro tyčový prvek v
dvourozměrném prostoru, globální matice tuhosti pro prutovou soustavu. Odvození
matice tuhosti elementu pomocí principu virtuální práce, tyčový element,
Hermitovský element, nosníkový element, roštový element, rovinný trojúhelníkový
element, čtyřúhelníkový element, isotropický element. Analýza konstrukce.
Sestavení globální matice tuhosti. Metody řešení soustavy lineárních rovnic.
Metoda hraničních prvků.
Sestavení soustavy diferenciálních rovnic elastického problému. Formulace
soustavy diferenciálních rovnic, zavedení okrajových a hraničních podmínek,
reakce, transformace proměnných. Numerické procedury. Numerická integrace,
jednodimenzionální numerická integrace (Gaussova metoda), numerická integrace v
dvojrozměrném systému, numerická integrace v trojrozměrném systému.
Fundamentální řešení. Kelvinova úloha bodového zatížení roviny, Bettiho teorie
vzájemnosti posuvů, Somiglianův integrál identity pro posunutí.
Dvoudimenzionální potenciální problém. Normálové zatížení poloroviny (Flamantova
úloha), spojité zatížení. Přímá metoda hraničních prvků. Koeficienty vlivu,
vytvoření systému rovnic, fundamentální řešení.

Literature

DHATT,G.-TOUZOT,G.: The Finite Element Method Displeyd, John Wiley and Sons,
New York 1984
BEER,G.-WATSON,J.O.: Introduction to Finite and Boundary Elemetn Methods
for Engineers, John Wiley & Sons,1992

Advised literature

BORESI,A.P.-SCHMIDT,R.J.-SIDEBOTTOM,O.M.: Advanced Mechanics of Materials,
John Wiley & Sons,Inc., 1993
CANDRUPATLA,T.R.-BELEGUNDU,A.D.: Introduction to Finite Elements in Engineering,
Prentice-Hall International, Inc., 1991