Skip to main content
Skip header

Optimization Methods Principles

Type of study Doctoral
Language of instruction English
Code 342-0961/02
Abbreviation POM
Course title Optimization Methods Principles
Credits 10
Coordinating department Institute of Transport
Course coordinator doc. Ing. Dušan Teichmann, Ph.D.

Subject syllabus

1. Linear programming methods for solving problems with one objective value
2. Fuzzy lineární programování.
3. Linear programming methods for solving problems with more objective values.
4.-5. Nonlinear programming methods with one objective value.
6. Transformation nonlinear models methods.
7. Two-level mathematical programming methods.
8. Dynamic programming methods.
9. Compromis programming methods.
10. Constraint Programming.
11. Goal programming methods.

Literature

BELLMANN, R., E.: Applied Dynamic programming. Princeton University Press, 2016. ISBN 978-06-916-2542-3 
JONES, D.; TAMIZ, M.: Practical Goal Programming. London: Springer, 2010. ISBN 978-1-4419-5770-2 
KAUR, J.; KUMAR, A.: An Introduction to Fuzzy Linear Programming Problems. Springer, 2016. ISBN 978-3-319-31274-3 
SINHA, S., M.: Mathematical Programming - Theory and Methods. Elsevier, 2005. ISBN 978-00-805-3593-7 
SHIMIZU, K.; ISHIZUKA, Y.; JONATHAN, F.: Nondifferentiable and Two-Level Mathematical Programming. Springer, 1997. ISBN 978-1-4615-6305-1 

Advised literature

APT, K., R.: Principles of Constraint Programming. Cambridge University Press, 2003. ISBN 978-05-211-2549-9 
FAIGLE, U.; KERN, W.; STILL, G.: Algorithmic Principles of Mathematical Programming. Springer, 2002. ISBN 978-14-020-0852-8 
NOVÁK, V.; PERFILIEVA, I.; MOČKOŘ, J.: Mathematical Principles of Fuzzy Logic. Boston: Kluwer Academic Publishers, 1999. ISBN 978-1-4615-5217-8