Skip to main content
Skip header

Systems Identification and Simulation

Type of study Follow-up Master
Language of instruction English
Code 352-0546/04
Abbreviation IaSS
Course title Systems Identification and Simulation
Credits 5
Coordinating department Department of Control Systems and Instrumentation
Course coordinator prof. Ing. Petr Noskievič, CSc.

Subject syllabus

1. Basic mathematical models of the dynamic systems, methods of their obtaining, overview of the analytical and experimental methods of system identification.
2. Realization of the mathematical models, simulation programmes, their classification and use.
3. Experimental identification using the deterministic signals. Approximation of the step responses.
4. Parameterization of the system characteristics, area methods, integration methods.
5. Bode plot characteristic – measurement and evaluation.
6. Statistic identification methods. Statistic characteristics, stationary, random process.
7. Identification using the correlation methods. Stochastic formulation of the dynamic systems, random test signals.
8. Identification using the parameter estimation, structure of the stochastic process and system.
9. Model parameter estimation, least square methods.
10. Recursive methods of the identification, weight coefficients, exponential filtering.
11. Identification of the systems operating in closed loop.
12. Realization of the simulation models, numerical solution, stability of the methods of numerical solution.
13. Model order reduction.
14. Simulation experiment, case study – the use of the simulation models by the design of the mechatronic system.

Literature

LJUNG,L. & GLAD,T. Modeling of Dynamic Systems.Prentice Hall,Inc.Engelwood Cliffs, New Persey 07632. ISBN 0-13-597097-0.
CLOSE, M.,Ch. & FREDERICK, K. Modeling and Analysis of Dynamic Systems. John Wiley & Sons, Inc. New York. 1995. ISBN 0-471-125172-2.

Advised literature

Soederstroem,T.-Stoica, P.: System identification Prentice Hall Int. ISBN 0-13-127606-9.
NOSKIEVIČ, P.: Modelling and Simulation of Mechatronic Systems using MATLAB-Simulink. Studijní texty v angličtině, Fakulta strojní, VŠB-TU Ostrava, 2013, 85 stran. ISBN 978-80-248-3250-3