Skip to main content
Skip header
Terminated in academic year 2022/2023

Theory of Electronic Circuits

Type of study Follow-up Master
Language of instruction English
Code 420-4001/02
Abbreviation TELO
Course title Theory of Electronic Circuits
Credits 6
Coordinating department Department of Electrical Engineering
Course coordinator Ing. Jitka Mohylová, Ph.D.

Subject syllabus

Lectures:
History of electronics; basic models and theorems (immittance functions, Thevenin and Norton´s theorems, equivalent input and output impedances); quiescent point - as common problem; linearization.
Quiescent point of basic active tripole (BJT, FET, triode); their admittance models.
Modern amplifier structures (VFA, CFA, OTA, Northon´s amplifier, conveyors) and their admittance models.
Feedback theory, Nyquist stability criterion - application.
Generalized nodal voltage analysis (GNVA), admittance model of linear electronic circuit (related to feedback theory, stability - determination from the admittance model).
Analysis of amplifier and oscillator structures by means of GNVA.

Analysis of 2. order filters, principles of cascading - higher order filters - an example.
Rectifiers, voltage and current sources, logarithmic amplifier, analog multiplier.
Modulation, demodulation, signal sampling.
A/D and D/A converter principles; application of D/A convertor and analog multiplier for filters frequency controlling.
Compression amplifier, stabilization of oscillator amplitude.
Amplifiers and filters in the time domain, influence of an op amp slew rate and recovery time.
Relaxation structures (nonharmonic signals - square wave, triangular wave, saw-tooth) - triangle-to-sinusoid conversion.
Degradation of electronic elements with temperature, dissipated power (causes of degradation) - reduction of influence (abduction of heat - heat sink); structural and theoretical connection between analog and digital technics.





Exercises:
Quiescent point of basic active tripoles (BJT, FET, triode); definition of project.

Analysis of input differential stage, middle stage and output stage (follower, rail to rail) of OPA.
Admittance models of inverting and or noninverting structures (ideally frequency nondependent).
Admitance models of 2. order RC filters
Admitance models of RC oscillators.
Amplifiers - time domain; astable multivibrator with OPA.
Reports on projects.

Laboratories:
Verification of quiescent point definitions of basic tripoles.
Measuring of amplifier frequency responses.
Measuring of 2. order filter frequency responses.

Measuring of amplifiers in the time domain.
Measuring of 2. order filters in the time domain.
Measuring of OPA astable multivibrator properties; influence of slew rate; warming with frequency.
Reserve.


Computer labs:
Introduction to the MATLAB - connection with admittance models of electronic elements.
Amplifier frequency responses (ideally frequency nondependent)- influence of real OPA properties.
Frequency dependent structures (filters)- influence of real OPA properties in the frequency domain.
Amplifier time responses (ideally frequency nondependent)- influence of real OPA properties.
Frequency dependent structures (filters)- influence of real OPA properties in the time domain.

Elaboration of project.
Elaboration of project.

Literature

Mohylová,J. - Punčochář,J.: Theory of electronic circuits, VŠB - TU Ostrava, 2013

Advised literature

Huelsman,L. P.: Basic circuit theory. Prentice - Hall Editions, Third edition, 1991
Mikulec, M.-Havlíček, V.: Basic circuit theory (I, II), ČVUT - Praha
Hejda, Z.-Punčochář, J.: The 1. order high-pass filter.Admittance models of modern linear amplifying structures. Transactions of the VŠB - Technical University of Ostrava, VI, 1, 2003, p.p. 50-55
Kolář, J.-Punčochář, J.: Band stop filtr with real operational amplifier.Transactions of the VŠB - Technical University of Ostrava, VI, 1, 2003, p.p. 92-100
Mohylová, J.: Influence of inverter vector error on common mode signal transmission of differential amplifier. http://www.elektrorevue.cz/index.php.en