Přednášky:
1. Úvod do numerických metod
Zobrazení čísel na počítači, typy chyb a jejich analýza.
2. Řešení nelineárních rovnic
Věta o pevném bodě, metoda prostých iterací, Newtonova metoda, řešení
soustav nelineárních rovnic.
3. Iterační metody řešení soustav lineárních rovnic
Jacobiova metoda, metoda sdružených gradientů, předpodmínění.
4. Vlastní čísla a vektory matic I
Částečný problém vlastních čísel: mocninná metoda, redukční metody.
5. Vlastní čísla a vektory matic II
Úplný problém vlastních čísel: Givensova, Householderova.
6. Interpolace
Lagrangeův a Newtonův interpolační polynom, trigonometrická interpolace,
interpolace pomocí spline funkcí.
7. Aproximace
Metoda nejmenších čtverců, Čebyševova aproximace.
8. Numerická derivace
9. Numerická integrace
Newtonovy-Cotesovy vzorce, Gaussova kvadratura, Richardsonova extrapolace.
10. Numerické řešení počátečních úloh pro obyčejné diferenciální rovnice I
Jednokrokové metody.
11. Numerické řešení počátečních úloh pro obyčejné diferenciální rovnice II
Vícekrokové metody.
1. Úvod do numerických metod
Zobrazení čísel na počítači, typy chyb a jejich analýza.
2. Řešení nelineárních rovnic
Věta o pevném bodě, metoda prostých iterací, Newtonova metoda, řešení
soustav nelineárních rovnic.
3. Iterační metody řešení soustav lineárních rovnic
Jacobiova metoda, metoda sdružených gradientů, předpodmínění.
4. Vlastní čísla a vektory matic I
Částečný problém vlastních čísel: mocninná metoda, redukční metody.
5. Vlastní čísla a vektory matic II
Úplný problém vlastních čísel: Givensova, Householderova.
6. Interpolace
Lagrangeův a Newtonův interpolační polynom, trigonometrická interpolace,
interpolace pomocí spline funkcí.
7. Aproximace
Metoda nejmenších čtverců, Čebyševova aproximace.
8. Numerická derivace
9. Numerická integrace
Newtonovy-Cotesovy vzorce, Gaussova kvadratura, Richardsonova extrapolace.
10. Numerické řešení počátečních úloh pro obyčejné diferenciální rovnice I
Jednokrokové metody.
11. Numerické řešení počátečních úloh pro obyčejné diferenciální rovnice II
Vícekrokové metody.