1. Data for data mining, types and sources of data
2. Attributes and their types, sparse data, incomplete and inaccurate data
3. Algebraic and geometric interpretation of data
4. Probabilistic interpretation of data
5. Numerical and categorial attributes, the basic analytical approaches
6. Data mining, pre-processing and data cleaning
7. Data representation
8. Foundations of data analysis (classification, clustering)
9. Networks and their properties
10. Types of networks and their representation
11. Basic measures and metrics
12. Structure and global properties of networks
13. Basic data structures for network representation
14. Basic algorithms for network analysis
2. Attributes and their types, sparse data, incomplete and inaccurate data
3. Algebraic and geometric interpretation of data
4. Probabilistic interpretation of data
5. Numerical and categorial attributes, the basic analytical approaches
6. Data mining, pre-processing and data cleaning
7. Data representation
8. Foundations of data analysis (classification, clustering)
9. Networks and their properties
10. Types of networks and their representation
11. Basic measures and metrics
12. Structure and global properties of networks
13. Basic data structures for network representation
14. Basic algorithms for network analysis