Skip to main content
Skip header

Quantum error correction

Type of study Follow-up Master
Language of instruction Czech
Code 460-4161/01
Abbreviation KOCH
Course title Quantum error correction
Credits 4
Coordinating department Department of Computer Science
Course coordinator prof. Ing. Ivan Zelinka, Ph.D.

Subject syllabus

Lectures:
1. From classical to quantum error correction
2. Noise models
3. Noise measure
4. Classically inspired quantum error correction codes
5. Quantum error correction criteria
6. Knill-Laflamme conditions
7. Introduction to stabilizer codes
8. Examples of error correction codes and stabilizer codes
9. Binding quantum error correction codes
10. CSS codes
11. Introduction to probabilistic quantum error correction
12. Introduction to fault-tolerant quantum error correction

Exercise:
1. Problem solving on noise modeling on quantum architecture.
2. Solving problems on: analyzing the properties of noise quantum systems.
3. Problem solving on: modelling error correction codes and stabilizer codes to
quantum architecture.
4. Solving problems on: analysis of error-correcting codes on quantum architecture.
5. Problem solving on the topic: modelling probabilistic error correction codes.
on quantum architecture.
6. Problem solving on the topic: analysis of quantum fault-tolerant error correction codes
error-proof quantum quantum systems.

E-learning

Literature

[1] Gottesman, D. (1997). Stabilizer codes and quantum error correction. California Institute of Technology.
[2] Lidar, D. A., & Brun, T. A. (Eds.). (2013). Quantum error correction. Cambridge university press.

Advised literature

[1] Nielsen, M. A. (1998). Quantum Information Theory (Doctoral dissertation, The University of New Mexico).
[2] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Physical Review A, vol. 55, no. 2, p. 900, 1997
[3] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum error correcting code,” Physical Review Letters, vol. 77, no. 1, p. 198, 1996.
[4] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Physical Review A, vol. 54, no. 2, p. 1098, 1996.
[5] A. M. Steane, “Simple quantum error-correcting codes,” Physical Review A, vol. 54, no. 6, p. 4741, 1996.
[6] A. M. Steane, “Error correcting codes in quantum theory,” Physical Review Letters, vol. 77, no. 5, p. 793, 1996.