Skip to main content
Skip header

Neural Networks

Type of study Doctoral
Language of instruction English
Code 460-6006/02
Abbreviation NS
Course title Neural Networks
Credits 10
Coordinating department Department of Computer Science
Course coordinator prof. Ing. Ivo Vondrák, CSc.

Subject syllabus

Lectures:
1. Neuron models. Neurons of the 1st generation. Neurons of the 2nd generation - Perceptron.
2. Neuron adaptation. Hebb's Algorithm. Widrwo-Hoff learning of linear neuron.
3. Multilayered architectures. Backpropagation and its parametric modification.
4. Implemenation of neuron with interval based excitation. Generalized Backpropagation.
5. Recurrent neural networks.
6. Kohonen learning and Self Organized Maps. Counter-propagation.
7. Hopfield networks. Boltzmann Machine. Bidirectional Associative Memory.
8. Využití Hopfieldových sítí v úlohách s omezujícími podmínkami.
9. Adaptive Resonance Theory.
10. Usage of genetic algorithm for neural netwok adaptation. Object-Oriented Design of Neural Networks.

Exercises (PC classroom):
1. Neuron models. Neurons of the 1st generation. Neurons of the 2nd generation - Perceptron.
2. Neuron adaptation. Hebb's Algorithm. Widrwo-Hoff learning of linear neuron.
3. Multilayered architectures. Backpropagation and its parametric modification.
4. Implemenation of neuron with interval based excitation. Generalized Backpropagation.
5. Recurrent neural networks.
6. Kohonen learning and Self Organized Maps. Counter-propagation.
7. Hopfield networks. Boltzmann Machine. Bidirectional Associative Memory.
8. Využití Hopfieldových sítí v úlohách s omezujícími podmínkami.
9. Adaptive Resonance Theory.
10. Usage of genetic algorithm for neural netwok adaptation. Object-Oriented Design of Neural Networks.

Literature

Hecht-Nielsen: Neurocomputing, Addison-Wesley 1989
Wasserman, P.D.: Neural Computing, Theory and Practice. Van Nostrand Reinhold, NY, 1989

Advised literature

Hecht-Nielsen: Neurocomputing, Addison-Wesley 1989