Skip to main content
Skip header

Variational Methods II

Type of study Follow-up Master
Language of instruction Czech
Code 470-4125/01
Abbreviation VM2
Course title Variational Methods II
Credits 6
Coordinating department Department of Applied Mathematics
Course coordinator prof. RNDr. Jiří Bouchala, Ph.D.

Subject syllabus

• Variational equations
• Mixed variational formulations
• Variational inequality
• Introduction to BEM
• Sobolev spaces on boundaries

Literature

• J. Bouchala, J. Zapletal: Variational methods, am.vsb.cz/bouchala

• S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods, Springer, 2008
• I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Solution of Variational Inequalities in Mechanics, Springer-Verlag, 1988
• O. Steinbach: Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, 2003
• W. McLean: Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000

Advised literature

• S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods, Springer, 2008
• I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Solution of Variational Inequalities in Mechanics, Springer-Verlag, 1988
• O. Steinbach: Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, 2003
• W. McLean: Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000