Skip to main content
Skip header

Coding Theory

Type of study Follow-up Master
Language of instruction English
Code 470-4203/02
Abbreviation TK
Course title Coding Theory
Credits 6
Coordinating department Department of Applied Mathematics
Course coordinator doc. Mgr. Petr Kovář, Ph.D.

Subject syllabus

Lectures:
1) Error correcting codes, Hamming distance.
2) Main coding theory problem. Necessary and sufficient condition for the existence of a (n, M, d)-code, perfect codes.
3) Block designs (BIBDS's).
4) Finite fields and vector spaces.
5) Linear codes. Coding and decoding, error detection.
6) Dual codes. Syndrome decoding.
7) Hamming codes. Binary and extended Hamming codes.
8) Perfect codes.
9) Latin squares, orthogonal Latin squares.
10) d-e-c-codes a BCH coes. Vandermond matrix.
11) Cyclic codes. Polynomials, binary a ternary Golay codes.
During the semester each student prepares one or two projects.

E-learning

Core materials are available on the instructor's website:
http://homel.vsb.cz/~kov16/predmety_tk.php

Literature

- R. Hill: A First Course in Coding Theory, Oxford University Press, (2009), ISBN 978-0-19-853803-5.

Advised literature

- D. R. Hankerson et. al. Coding Theory and Cryptography, 2nd edition, CRC Press, (2000), ISBN 0-8247-0465-7