Lectures:
1) Error correcting codes, Hamming distance.
2) Main coding theory problem. Necessary and sufficient condition for the existence of a (n, M, d)-code, perfect codes.
3) Block designs (BIBDS's).
4) Finite fields and vector spaces.
5) Linear codes. Coding and decoding, error detection.
6) Dual codes. Syndrome decoding.
7) Hamming codes. Binary and extended Hamming codes.
8) Perfect codes.
9) Latin squares, orthogonal Latin squares.
10) d-e-c-codes a BCH coes. Vandermond matrix.
11) Cyclic codes. Polynomials, binary a ternary Golay codes.
During the semester each student prepares one or two projects.
1) Error correcting codes, Hamming distance.
2) Main coding theory problem. Necessary and sufficient condition for the existence of a (n, M, d)-code, perfect codes.
3) Block designs (BIBDS's).
4) Finite fields and vector spaces.
5) Linear codes. Coding and decoding, error detection.
6) Dual codes. Syndrome decoding.
7) Hamming codes. Binary and extended Hamming codes.
8) Perfect codes.
9) Latin squares, orthogonal Latin squares.
10) d-e-c-codes a BCH coes. Vandermond matrix.
11) Cyclic codes. Polynomials, binary a ternary Golay codes.
During the semester each student prepares one or two projects.