Skip to main content
Skip header

Coding Theory

Type of study Doctoral
Language of instruction English
Code 470-6303/02
Abbreviation TKDRS
Course title Coding Theory
Credits 10
Coordinating department Department of Applied Mathematics
Course coordinator doc. Mgr. Petr Kovář, Ph.D.

Subject syllabus

Lectures:
1) Error correcting codes, Hamming distance.
2) Main coding theory problem. Necessary and sufficient condition for the existence of a (n, M, d)-code, perfect codes.
3) Block designs (BIBDS's).
4) Finite fields and vector spaces.
5) Linear codes. Coding and decoding, error detection.
6) Dual codes. Syndrome decoding.
7) Hamming codes. Binary and extended Hamming codes.
8) Perfect codes.
9) Latin squares, orthogonal Latin squares.
10) d-e-c-codes a BCH coes. Vandermond matrix.
11) Cyclic codes. Polynomials, binary a ternary Golay codes.
During the semester each student prepares one or two projects.

Literature

Hill: A First Course in Coding Theory, Clarendon Press, Oxford, reprinted 2009.

Advised literature

Assmus, Key: Designs and their Codes, University of Cambridge, 1993, ISBN 0-521-458639-0.
Hankerson et al.: Coding Theory and Cryptography, CRC Press, 2000, ISBN 0-8247-0465-7.